
Abstract

When introducing compiler optimizations, one has to make sure the meaning of the
program is not changed. In particular, optimizations of recursive let-bindings should not
alter the termination behaviour of an expression. During the proof thereof, unification
problems between multisets of variable-to-variable bindings, i.e. equations of the form
[a1 = b1, ..., an = bn] = [x1 = y1, ..., xm = ym], arise, where ai, bi, xi, yi can be
either fixed or be instantiable by such fixed variable names. The problem is shown
to be NP-complete, and an algorithm to find the set of all solutions is proven correct.
As an extension to the problem, set variables are introduced, standing for arbitrary
multisets of bindings, which also occur in optimization rules. As the decidability of
the extension was previously unknown, algorithms were successively developed, starting
with restricted cases such as allowing only one set variable per equation. Eventually, a
concrete solution to the unrestricted multiset extension is provided, showing the problem
to be decidable. Each of the extensions are proven correct, and the final, unrestricted
problem is implemented in Haskell and tested extensively. Another extension is that of
chain variables, representing chains of bindings of the form [x1 = x2, x2 = x3, ..., xn−1 =
xn]. A restricted case of this is being inspected.
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1 Motivation

There are several ways to define the semantics of a programming language. A common
way is operational semantics, where concrete rewriting rules specify the meaning of
constructs in the language. For example, the evaluation of an if-then-else clause might
be specified in one of the following ways (examples drawn from [7]):

if True then t2 else t3 → t2 if False then t2 else t3 → t3

t1 → t′1

if t1 then t2 else t3 → if t′1 then t2 else t3

Figure 1.1: if-then-else defined in small-step operational semantics

t1 ⇓ True t2 ⇓ v2

if t1 then t2 else t3 ⇓ v2

t1 ⇓ False t3 ⇓ v3

if t1 then t2 else t3 ⇓ v3

Figure 1.2: if-then-else defined in big-step operational semantics

The compiler’s main task, then, (among other things like memory management and
synchronization) is to implement these rules (reductions), which, however, do not have
to be obeyed word-for-word. It is perfectly valid — and common — for a compiler to
spot inefficiencies in advance and to remove them.

In lazily evaluated functional languages such as Haskell, where order of evaluation is
irrelevant, there is plenty of room for such compiler optimizations. These optimizations
are defined in terms of optimization rules, similar to these in operational semantics.
Figure 1.3 shows an example of such a rule which GHC, Haskell’s standard compiler,
performs (introduced in [5]).

let x = let v=e in b in c −→ let v=e in let x=b in c

Figure 1.3: An example of an optimization rule: Let-floating

1



1 Motivation

When introducing optimizations, however, one has to make sure the meaning of the
program is not changed. One of the properties to be checked is convergence equivalence,
i.e. a program’s termination behaviour should not change after an optimization has taken
place. In particular, assuming that a program P0 terminates, its optimized version Q0

should also terminate.
In a lazily evaluated language, the assumption is equivalent to P0 evaluating to weak-

head normal form (WHNF). In other words, there exists a finite sequence of reductions
Pi → Pi+1 starting at P0 and ending in Pn, where Pn is in WHNF.

The termination of Q0 is then shown by induction over the reduction of P0: First,
prove that for any i, if Pi is in WHNF, Qi is also in WHNF. Then, it suffices to show
that if Pi optimizes to Qi and Pi reduces to Pi+1, there exists a reduction Qi → Qi+1

such that Pi+1 optimizes to Qi+1. This procedure is illustrated in Figure 1.4.

Pi Qi

Pi+1 Qi+1

Pn Qn

red

*

opt

opt′
red′

*

Figure 1.4: The diagram method [9] for the proof of convergence equivalence

The need for unification arises at the top left corner of the diagram. Given a reduction
rule red : R → R′ and an optimization rule opt : Q→ Q′, if R and Q are not unifiable,
the correctness of opt is irrelevant for red. Contrarily, if R and Q are unifiable by
a substitution σ, we want to express Pi := σ(R) = σ(Q), apply the reduction and
optimization on it to obtain Pi+1 = σ(R′) and Qi = σ(Q′), and proceed to find red′ and
opt′ to provide us with the same Qi+1 = red′(Qi) = opt′(Pi+1).

As we do not want to be overwhelmed by the abundance of constructs to be considered
in a full-blown language, we concentrate on recursive let-bindings (letrec). These are of
the form let E in e where E consists of variable bindings of the form x = y, stating that
x is bound to y. Then, x can be used in the expression e as a substitute for y. For exam-
ple, let x = 5; y = x in x * 2 + y is the same as 5 * 2 + 5. The bindings can be
recursive, i.e. self-containing like f = (\x -> if x <= 1 then 1 else f (x-1) * x),
in which case the binding does not act as a description of a mere substitute, but as a
representation of the fixed point of f.

To study these expressions, [10] extends the call-by-need lambda calculus by letrecs
to the calculus Lneed . Together come reduction and transformation rules using set vari-
ables, standing for arbitrary multisets of bindings, as well as chain variables, standing
for chains of bindings like a=b,b=c,c=d.

In the following chapters, the focus of our attention will lie on the unification of these
sets or multisets of bindings that occur in the rules for the letrec expressions.
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Related Work

Motivated by automatic theorem proving, general unification algorithms have been
studied since [8], allowing us to unify first-order logic terms, which were later im-
proved to yield results within linear time [6, 3]. Concretely, given a set of pairs of
terms, the algorithm finds the set of substitutions that, for all pairs in the input set,
makes both sides of the pair equal. For example (from [6]), a pair might look like
〈F (x1, x2), F (G(x2), G(x3))〉, which is unified by the substitution {x1 7→ G(G(x3)), x2 7→
G(x3)}, giving us the pair 〈F (G(G(x3)), G(x3)), F (G(G(x3)), G(x3))〉 when applied. Our
set-up [a1 = b1, ..., an = bn] of letrec bindings could also be described as the first-order
term En(B(a1, b1), ..., B(an, bn)). However, this representation would not account for
the commutativity of E, or in other words, the expression would be seen as a list of
bindings instead of a multiset. [2] provides ways to deal with exactly this (among with
a few other data structures); furthermore, it incorporates second-order “tails”, or single
set variables, in our nomenclature. [4] extends this to allow multiple set variables. Parts
of this thesis are special cases of these results (cf. next subsection).

Overview

In Chapter 2, basic concepts like expressions and substitutions will be introduced, fol-
lowed by a definition and solution of the simple unification problem, i.e. sets of equations
of the form [a1 = b1, ..., an = bn] = [x1 = y1, ..., xm = ym]. In Section 2.3, the problem is
shown to be NP-complete.

In Chapter 3, we will study extensions to the simple problem, where Sections 3.1, 3.3
and 3.4 will cover multiset extensions. In Section 3.1, a single multiset variable will be
allowed on only one side of each equation. In Section 3.3, both sides of the equation will
be allowed to have at most one multiset variable (this is a special case of “bags with tails”
discussed in [2]). Section 3.2 is a variant of this, where the expressions as well as their
variables are considered true sets instead of multisets. In Section 3.4, all restrictions
will be lifted, such that an arbitrary number of multisets is allowed to appear anywhere
in the problem. A special case of this is mentioned in Subsection 3.4.4 in which the
variables linear, i.e. each variable can appear only once in the whole problem. This is a
special case of [4]. The extension in Section 3.5 allows a single chain variable — a new
type of multiset variable — on one side of each equation, which can only be instantiated
by an expression which is of the form [x0 = x1, x1 = x2, ..., xn−1 = xn].

In Chapter 4, the functionalities (Section 4.1) of the implementation of the algorithm
from Section 3.4 (which includes both of the problems from Sections 3.1 and 3.3) will be
presented. Section 4.2 mentions acceleration rules, an implementation detail. Finally, in
Section 4.3, tests conducted on the algorithm will be outlined.
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2 The Simple Unification Problem for
Variable Bindings

2.1 The Problem

2.1.1 Expressions

General expressions

Variable bindings are of the form x = y, where x and y are (not necessarily distinct)
variables from some variable space V (any countable set) with x, y ∈ V . Expressions
ExprV over V are finite multisets of such variable bindings.

Definition 2.1.1 (expressions). An expression of variable bindings over the variable
space V is defined by the following BNF grammar:

ExprV ::= ∅ | BindV ,ExprV (expressions)

BindV ::= VarV = VarV (bindings)

VarV ::= V (variables)

Notation. Instead of closing every non-empty expression with a “, ∅”, the whole ex-
pression may be written in list-like brackets ([]).

Example. Assuming x, b, d, A,X, Y ∈ V , the following words are all expressions: “ ∅”,
“ x = A, ∅”, “ X = Y, b = b, b = d, ∅”; alternatively written as “ []”, “ [x = A]” and
“ [X = Y, b = b, b = d]”, respectively.

As forementioned, we see expressions as a multiset, and therefore ignore the order of
its elements. Formally, we define:

Definition 2.1.2 (multiset-equality of expressions). Let e1 := [b1, ..., bn] and e2 :=
[b′1, ..., b

′
m] be expressions. Then, e1 and e2 are equal as a multiset, denoted e1 ∼ e2, if

and only if n = m and ∃π ∈ Sn ∀i ∈ {1, ..., n} : bi = b′π(i), where Sn is the set of

bijections on {1, ..., n}.

Notation. Henceforth, e1 = e2 stands for e1 ∼ e2 unless otherwise noted.

Definition 2.1.3. Let e1 = [b1, ..., bn] and e2 = [b′1, ..., b
′
m] be expressions. Concatenation

e1 ∪ e2, difference e1 \ e2 and the subset relation e1 ⊆ e2 are defined in their usual ways.
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2 The Simple Unification Problem for Variable Bindings

Lemma 2.1.1. If A = [a1, ..., an], B = [b1, ..., bm] and X = [x1, ..., xk] are expressions,
X ∪A = X ∪B implies A = B.

Proof. Assume [x1, ..., xk, a1, ..., an] = [x1, ..., xk, b1, ..., bm], i.e. k + n = k +m and there
exists a bijection π : {1, ..., k + n} → {1, ..., k + n} such that xi = xπ(i) (if π(i) ≤ k) or
xi = bπ(i)−k (if π(i) > k) for all i ∈ {1, ..., k} and ai−k = xπ(i) or ai−k = bπ(i)−k for all
i ∈ {k + 1, ..., k + n}.
We show A = B by constructing a bijection ρ : {1, ..., n} → {1, ..., n} such that ai = bρ(i)

for all i ∈ {1, ..., n}: For each i ∈ {1, ..., n}, there exists a smallest ci ∈ N+ such that
j := πci(k + i) > k, as permutations are known to have finite characteristics. Choosing
ρ(i) := j − k, one verifies that ρ is injective, which suffices for bijectivity: Assuming
ρ(i1) = ρ(i2), i.e. πci1 (i1 + k) − k = πci2 (i2 + k) − k or πci1 (i1 + k) = πci2 (i2 + k) after
adding k to both sides, ci1 6= ci2 (without loss of generality, ci1 < ci2) would result in
a contradiction i1 + k = πci2−ci1 (ci2) to the minimality of ci2 . Hence, i1 = i2 from the
bijectivity of πci1 = πci2 .

Furthermore, we note at this point how we can extend a map between variable spaces
to operate on expressions:

Definition 2.1.4 (canonical extension). Given two variable spaces V and W , the ex-
tension operators ωBind and ωExpr are defined as follows: For all f : V → W and
v, v′ ∈ V ,

ωBind : (V →W )→ (BindV → BindW )

ωBind (f)(v = v′) := f(v) = f(v′)

ωExpr : (V →W )→ (ExprV → ExprW )

ωExpr (f)([b1, ..., bn]) := [ωBind (f)(b1), ..., ωBind (f)(bn)]

Examples. Remark 2.1, Def. 2.1.7.

Lemma 2.1.2. Canonical extension preserves injectivity.

Proof. Let f : V → W be injective. Then, ωBind (f) is injective, since for any bindings
(v = v′) and (w = w′),

ωBind (f)(v = v′) = (f(v) = f(v′)) = (f(w) = f(w′)) = ωBind (f)(w = w′)

implies f(v) = f(w) and f(v′) = f(w′) and thus, due to injectivity of f , v = w and
v′ = w′ and hence (v = v′) = (w = w′).
ωExpr (f) is also injective, since for any expressions [b1, ..., bn] and [b′1, ..., b

′
m],

ωExpr (f)([b1, ..., bn]) = [ωBind (f)(b1), ..., ωBind (f)(bn)]

= [ωBind (f)(b′1), ..., ωBind (f)(b′m)] = ωExpr (f)([b′1, ..., b
′
m])

implies n = m and the existence of a π ∈ Sn such that ∀i ∈ {1, ..., n} : ωBind (f)(bi) =
ωBind (f)(b′π(i)) and thus, due to injectivity of ωBind (f), bi = b′π(i) for each i ∈ {1, ..., n}
and hence [b1, ..., bn] = [b′1, ..., b

′
m].
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2.1 The Problem

Ground expressions and expressions with metavariables

From now on we consider expressions over concrete variable spaces: ground variables,
which stand for actual program variables, and metavariables, which we will use as place-
holders for unknown program variables.

Definition 2.1.5 (ground variables and expressions). We denote G := {x1, x2, ...}, or,
more commonly, VarG, the set of ground variables. Elements of ExprG are called ground
expressions.

Definition 2.1.6 (expressions with metavariables). Let H := {X1, X2, ...} be the set
of metavariables. We denote M := VarG ∪ H, or, more commonly, VarM , the set
of variables including metavariables. Elements of ExprM are called expressions with
metavariables.

Notation. The index for variables might be omitted, and other letters might be used.
Also, we often misuse the notation to use ground and meta variables as variables standing
for variables, i.e. X1 might be a variable standing for X2, although from the definitions
above, X1 6= X2 should always hold. Equally, x might stand for e.g. y. (Presumably, in-
troducing a separate notation for meta-ground-variables and meta-meta-variables would
be more confusing.)

Examples. X1987, X0, X, A, B, C20, D3 are all metavariables. x1987, x0, x, a, b, c20,
d3 are all ground variables.

Remark 2.1. The inclusion G ⊆ι M extends to ExprG ⊆ωExpr (ι) ExprM canonically
(Lemma 2.1.2).

2.1.2 Substitutions

We now make the notion of “metavariables as placeholders for ground variables” more
concise by introducing substitutions: functions that replace finitely many metavari-
ables by other variables. A special case of these are ground substitutions that exclude
metavariables from its image.

Definition 2.1.7 (substitutions). A substitution is a function σ : VarM → VarM , as
well as its canonical extensions ωBind (σ) and ωExpr (σ), such that the restriction σ|VarG
to the subset of program variables is the identity function id|VarG and there exists a finite
set F such that σ|VarM\F is also id|VarM\F . The set of all ground substitutions is denoted
SubstM .

Definition 2.1.8 (ground substitutions). A ground substitution is a substitution σ such
that im(σ) ⊆ VarG. The set of all ground substitutions is denoted SubstG.

Notation. Where it is clear from the context, ω is omitted and one simply writes σ(v =
v′) or σ([b1, ..., bn]).
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2 The Simple Unification Problem for Variable Bindings

Notation. As substitutions leave all but finitely many variables the same, one can write
any substitution σ as {Xρ(1) 7→ σ(Xρ(1)), ..., Xρ(n) 7→ σ(Xρ(n))} for some n ∈ N, where
ρ : {1, ..., n} → N is injective and σ(Xi) = Xi for all i ∈ N \ im(ρ).

Examples. σ := {X 7→ y, A 7→ B} is a substitution, with e.g.

ωExpr (σ)([X = a]) = [ωBind (σ)(X = a)] = [σ(X) = σ(a)] = [y = id(a)] = [y = a],

or σ([X = a]) = [y = a], for short. {X 7→ a, X 7→ B} is not a substitution, since it is
ill-defined (ρ is not injective). Xi 7→ Xi+1 is also not a substitution, since it changes
infinitely many variables.

Composition and Generality

Notation (composition of substitutions). The composition, i.e. successive application,
of multiple substitutions σ1, ..., σn is written with ◦ and from right to left: σn ◦ ... ◦ σ1.
We might omit ◦ where appropriate.

Remark 2.2. Let a = {A1 7→ a1, ..., An 7→ an} and b = {B1 7→ b1, ..., Bm 7→ bm}, where
there might be i and j such that Ai = Bj . Let {B′1, ..., B′s} = {B1, ..., Bm} \ {A1, ..., An}
and b′i := b(B′i) for each i ∈ {1, ..., s}. Then, b ◦ a = {A1 7→ b(a1), ..., An 7→ b(an), B′1 7→
b′1, ..., B

′
s 7→ b′s}.

Proof. One verifies that b ◦ a as described above matches successive application in all
of the possible cases for X: If X = Ai for some i, then, b(a(X)) = b(a(Ai)) = b(ai),
justifying the (Ai 7→ ai)-components. If X /∈ {A1, ..., An} but X = Bi for some i, by
definition of {B′1, ..., B′s} there must exist some j such that X = B′j , hence b(a(X)) =
b(a(B′j)) = b(B′j) = b′j , as needed for B′i 7→ b′i. If X /∈ {A1, ..., An} and X /∈ {B1, ..., Bs},
then, b(a(X)) = X, which we can ignore according to our notational conventions.

Definition 2.1.9 (generality and equivalence of substitutions). A substitution σ is more
general than a substitution τ , denoted σ ≤ τ , when there exists a substitution λ such
that λσ = τ . Two substitutions σ and τ are called equivalent if and only if σ ≤ τ and
τ ≤ σ.

Definition 2.1.10 (restriction of the domain). One might restrict notions regarding
substitutions to a subset W of the actual domain, denoted with a subscript [W ]. For
example, σ =[W ] τ if σ(w) = τ(w) for any w ∈ W , or σ ≤[W ] τ , when there exists a
substitution λ such that λσ =[W ] τ .

2.1.3 Unification problems

Definition 2.1.11. An element of a unification problem is defined by

ProbEl ::= ExprM
.

= ExprM .

A unification problem UnifProb is a finite set of ProbEls.

8



2.2 Solution

Definition 2.1.12 (unifier). A unifier to a unification problem Γ is a substitution Sol
such that ∀e1

.
= e2 ∈ Γ : Sol(e1) = Sol(e2).

Definition 2.1.13 (solution). A solution to a unification problem Γ is a unifier Sol
such that Sol is a ground substitution.

2.2 Solution

2.2.1 Data structure

To solve the unification problem, i.e. to find some or all of the substitutions that are
solutions to the problem, we use the data structure Solver , a finite set of SolverEls,
defined by:

SolverEl ::= ExprM
?
= ExprM | BindM

?
= BindM | VarM

?
= VarM

Before beginning the algorithm, the problem is translated into the solver data structure

by Υ : UnifProb → Solver , mapping e1
.

= e2 7→ e1
?
= e2 onto the set. The notion of

unifiers is analogously translated into the solver data structure.

2.2.2 Algorithm

A subset of all of the solutions to a simple unification problem ∆ ∈ UnifProb is obtained
by the algorithm shown in Figure 2.1. It is initialized with (id,Υ(∆)) and, for each state
(σ,Γ) the algorithm reaches, if P holds and a rule

(σ,Γ)

(σ1,Γ1) | ... | (σn,Γn)
P

exists, the algorithm transitions into some or all of the states (σ1,Γ1), ..., (σn,Γn) “non-
deterministically” (e.g. a depth-first search, in practice), depending on whether we want
only some or all of the solutions to the problem. Each branch of the algorithm terminates
with either (Sol , ∅) or Fail , where, in the former case, Sol is a unifier to ∆, and in the
latter, it is indicated that no solutions for the correspondent branch were found.

We view this unifier as an encoding for the set of all solutions τ such that Sol ≤ τ ,
since representing all of them explicitly would require an infinite data structure.

Notation. When we write ∆∪Γ in a rule, we actually mean ∆∪̇Γ, i.e. ∆∩Γ = ∅. Also,
x (note the difference to x and X) stands for either a program variable or a metavariable.

Notation. Γ[a/b] stands for Γ with all occurrences of b substituted by a.
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2 The Simple Unification Problem for Variable Bindings

V-Tautology

(Sol , {x ?
= x} ∪ Γ)

(Sol ,Γ)

V-Clash

(Sol , {x ?
= y} ∪ Γ)

Fail
x 6= y

V-Application

(Sol , {X ?
= x} ∪ Γ)

({X 7→ x} ◦ Sol ,Γ[x/X])

V-Orientation

(Sol , {x ?
= X} ∪ Γ)

(Sol , {X ?
= x} ∪ Γ)

B-Decomposition

(Sol , {x = y
?
= x′ = y′} ∪ Γ)

(Sol , {x ?
= x′, y

?
= y′} ∪ Γ)

E-Tautology

(Sol , {∅ ?
= ∅} ∪ Γ)

(Sol ,Γ)

E-ClashR

(Sol , {[b1, ..., bk]
?
= ∅} ∪ Γ)

Fail
k > 0

E-ClashL

(Sol , {∅ ?
= [b1, ..., bk]} ∪ Γ)

Fail
k > 0

E-Distribution

(Sol , {[b1, ..., bk]
?
= [b′1, ..., b

′
m]} ∪ Γ)

|mi=1 (Sol , {b1
?
= b′i, [b2, ..., bk]

?
= [b′1, ..., b

′
i−1, b

′
i+1, ..., b

′
m]} ∪ Γ)

k > 0, m > 0

Figure 2.1: Algorithm for the simple unification problem
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2.2 Solution

2.2.3 Correctness

Termination

We show that for any correct input, the output of the algorithm is defined. In particular,
the algorithm should neither “get stuck” such that there exists no rule that is applicable,
nor be able to apply rules infinitely many times.

Proposition 2.2.1. For any SolverEl, there exists an applicable rule.

Proof. For equations VarM
?
= VarM , if the variable on the left-hand side is (syntac-

tically) equal to the variable on the right-hand side, V-Tautology is applied. The
remaining cases are covered in the following table:

ground (R) meta (R)

ground (L) V-Clash V-Orientation

meta (L) V-Application

Any element of the form BindM
?
= BindM is treated by B-Decomposition. For

ExprM
?
= ExprM , the following table covers every possible case:

empty (R) non-empty (R)

empty (L) E-Tautology E-ClashL
non-empty (L) E-ClashR E-Distribution

Proposition 2.2.2. Applying the rules, Γ will eventually become empty within finitely
many steps.

Proof. A clash-rule (V-Clash, R-ClashL, E-ClashR) terminates the current branch
of the algorithm immediately. For the other rules, let µT be the number of T s in a Solver
data structure, where T ∈ {ExprE , BindE , VarE , RMVar , BExpr} and ExprE denotes
Expr -equations, BindE denotes Bind -equations, VarE denotes Var -equations, RMVar
denotes metavariables on the right hand side of an equation, BExpr the bindings inside
of expressions. Formally:

κT∈{ExprE , BindE , VarE} : SolverEl −→ N0

t1
?
= t2 7−→

{
1, t1

?
= t2 ∈ T

0, otherwise

κRMVar : SolverEl −→ N0

v
?
= Xi 7−→ 1

t1
?
= t2 7−→ 0, t1, t2 /∈ Var or t2 is not meta

11



2 The Simple Unification Problem for Variable Bindings

κBExpr : SolverEl −→ N0

[b1, ..., bk]
?
= [b′1, ..., b

′
m] 7−→ k +m

t1
?
= t2 7−→ 0, t1, t2 /∈ Expr

and for every T ∈ {ExprE , BindE , VarE , RMVar , BExpr}:

µT : Solver −→ N0

Γ 7−→
∑
γ∈Γ

κT (γ)

Then, for each rule application, the measure

µ : Solver −→ N5
0

Γ 7−→ (µExprE (Γ), µBExpr (Γ), µBindE (Γ), µVarE (Γ), µRMVar (Γ))

strictly decreases with respect to the lexicographic ordering on N5
0. Eventually, the mea-

sure must reach (0, ..., 0) in which case Γ is empty.
Indeed, V-Tautology decreases µVarE by 1. If x is a metavariable, µRMVar also de-
creases by 1. The other measures stay the same. Similarly, µExprE decreases by 1 on ap-
plication of E-Tautology whereas the other measures do not change. V-Application

decreases µVarE by at least 1 as the term {X ?
= x} is discarded. µVarE can, along with

µBExpr , µExprE , µBindE and µRMVar , decrease by more than one, if the rewriting of X
to x causes previously distinct elements of Γ to become equal. Additionally, if x was
a ground variable, µRMVar can decrease by up to the number of times X appeared on
the right-hand side. The application of V-Orientation decreases µRMVar by 1, and,

if X
?
= x was already contained in Γ, µVarE also decreases by 1. The other measures

retain their values. B-Decomposition increases µVarE and µRMVar by at most 2, but
decreases µBindE by 1. For each branch, E-Distribution decreases µBExpr at least by
2, compensating the increase of at most 1 in µBindE .
Table 2.1 provides an overview for the changes in the measures, where “dec” stands
for decrease and “inc” for increase, “?” indicating that the change is possible but not
necessary.

Rule ExprE BExpr BindE VarE RMVar

V-Taut - - - dec dec?
V-App dec? dec? dec? dec dec?
V-Ori - - - dec? dec
B-Dec - - dec inc? inc?
E-Taut dec - - - -
E-Dist - dec inc? - -

Table 2.1: Measure changes during the simple problem

12



2.2 Solution

Soundness

We have to show that all results the algorithm yields is a valid unifier to the unification
problem. To this end, it suffices to prove the following invariant:

Theorem 2.2.1. For each interim result (σ,Γ) and for each substitution τ unifying Γ,
τσ is a unifier to Γini , the initial problem.

Then, when the algorithm terminates with (σ, ∅), since id unifies ∅, id ◦ σ = σ is a
unifier to the unification problem.

Proof. We verify that the invariant holds for the initialization (id,Γini): if τ is a unifier
for Γini , then, τ ◦ id also unifies Γini .
For the clash-rules (V-Clash, R-ClashL, E-ClashR), there is nothing to show, since

they do not yield any result. For each other rule
(σ,Γ)

(σ′,Γ′)
P , we assume that P holds and,

for all τ unifying Γ, τσ is a unifier, and show that for all τ ′ unifying Γ′, τ ′σ′ is also a
unifier.
V-Tautology: Let τ ′ be a unifier for Γ. Then, since {x ?

= x} is already unified, τ := τ ′

is also a unifier for {x ?
= x} ∪ Γ. Hence, τ ◦ Sol = τ ′ ◦ Sol is a unifier.

E-Tautology: Analogous to V-Tautology.
V-Application: Let τ ′ be a unifier for Γ[x/X]. Then τ := τ ′ ◦ {X 7→ x} unifies

{X ?
= x} ∪ Γ, since τ({X ?

= x} ∪ Γ) = τ ′({x ?
= x} ∪ Γ[x/X]) and {x ?

= x} is already
unified. Hence, τ ◦ Sol = τ ′ ◦ {X 7→ x} ◦ Sol is a unifier.

V-Orientation: Let τ ′ be a unifier for {X ?
= x} ∪ Γ. Then, τ ′(X) must be x, which

makes τ := τ ′ also a unifier of {x ?
= X} ∪ Γ. Hence, τ ◦ Sol = τ ′ ◦ Sol is a unifier.

B-Decomposition: Let τ ′ be a unifier for {x ?
= x′, y

?
= y′}∪Γ. Then, τ ′(x) = τ ′(x′) and

τ ′(y) = τ ′(y′) must hold, which makes τ := τ ′ also a unifier of {x = y
?
= x′ = y′}∪Γ, since

τ ′(x = y) = (τ ′(x) = τ ′(y)) = (τ ′(x′) = τ ′(y′)) = τ ′(x′ = y′). Hence, τ ◦ Sol = τ ′ ◦ Sol is
a unifier.
E-Distribution: Let k > 0, m > 0 and τ ′ be a unifier for {b1

?
= b′i, [b2, ..., bk]

?
=

[b′1, ..., b
′
i−1, b

′
i+1, ..., b

′
m]}∪Γ for some i ∈ {1, ..., k}, i.e. τ ′(b1) = τ ′(b′i) and τ ′([b2, ..., bk]) =

τ ′([b′1, ..., b
′
i−1, b

′
i+1, ..., b

′
m]). Then, there exists a permutation π ∈ Sk such that τ ′(bj) =

τ ′(bπ(j)) (with π(1) = i). This makes τ := τ ′ also a unifier of {[b1, ..., bk]
?
= [b′1, ..., b

′
m]}∪Γ.

Hence, τ ◦ Sol = τ ′ ◦ Sol is a unifier.

Completeness

Lemma 2.2.1. For each interim result (σ,Γ), if there exists an equation in Γ that
contains an X ∈ VarM , then, σ(X) = X.

Proof. By induction on the structure of the derivation of the interim result. Clearly,
the lemma holds for the initialization (id,Γini). One sees that there is no rule that
adds metavariables to Γ. Regarding σ, V-Application is the only rule that changes it.

13



2 The Simple Unification Problem for Variable Bindings

Assuming Sol does not change metavariables occurring in {X ?
= x} ∪ Γ, {X 7→ x} ◦ Sol

also does not change metavariables in Γ[x/X], since the metavariable X was substituted
away.

We have to make sure that there is no solution to the unification problem that is not
found by the algorithm. To this end, it suffices to prove the following invariant:

Theorem 2.2.2. For each interim result (σ,Γ) and for each solution η of the initial
problem Γini , there exists a solution τ to Γ such that η = τσ.

Then, there must exist some conclusion (σ, ∅) and a substitution τ such that η = τσ,
specifically, η ≥ σ, showing that every solution η is taken into account by a representative
lower bound.

Proof. The invariant holds for the initialization (id,Γini): if η is a solution to Γini , then
there exists a solution τ := η to Γini such that η = η ◦ id.

For each rule
(σ,Γ)

|ni=1 (σ′i,Γ
′
i)
P , assuming that P holds and there exists a substitution τ

such that η := τσ is a solution for Γ, we show that there exists an i ∈ {1, ..., n} and a
substitution τ ′ such that η = τ ′σ′i and η is a solution for Γ′i.

For the clash rules (V-Clash, E-ClashR, E-ClashL), observe that the premises ({x ?
=

y} with x 6= y and {[b1, ..., bk]
?
= ∅}, {∅ ?

= [b1, ..., bk]} with k > 0) can never be unified,
making the statement hold trivially.

V-Application: Assume τ ◦ Sol is a solution for {X ?
= x} ∪ Γ, in particular, τ(X) =

τ ◦ Sol(X) = τ ◦ Sol(x) = τ(x) (Sol can be removed due to Lemma 2.2.1). Then,
τ ◦ {X 7→ x} ◦ Sol = η = τ ◦ Sol as needed, since on both side of the equation, X, as the
only variable the change has an effect, is sent to τ(x). It remains to show that η also
solves Γ[x/X], which holds since the substitution solved Γ already and [x/X] makes no

difference as η, also a solution to {X ?
= x}, did not distingish between x and X anyway.

V-Tautology: Assume η solves {x ?
= x}∪Γ. Then, it also must have solved the subset

Γ.
E-Tautology: Analogous to V-Tautology.

V-Orientation: Assume η solves {x ?
= X} ∪ Γ, i.e. it solves Γ and η(X) = x. Then it

solves {X ?
= x} and Γ, thus η is a solution to {X ?

= x} ∪ Γ.

V-Decomposition: Assume η solves {x = y
?
= x′ = y′} ∪ Γ, i.e. it solves Γ and

η(x = y) = (η(x) = η(y)) = (η(x′) = η(y′)) = η(x′ = y′). Then, η(x) = η(x′) and

η(y) = η(y′), making η also a solution to {x ?
= x′, y

?
= y′} ∪ Γ.

E-Distribution: Assume k > 0 and m > 0 and that η solves {[b1, ..., bk]
?
= [b′1, ..., b

′
m]}∪

Γ. Specifically, η([b1, ..., bk]) = [η(b1), ..., η(bk)] = [η(b′1), ..., η(b′m)] = η([b′1, ..., b
′
m]), i.e.

k = m and there exists a permutation π ∈ Sk such that η(b1) = η(b′π(1)), ..., η(bk) =

η(b′π(k)). Choosing i := π(1) ∈ {1, ..., k}, η also solves {b1
?
= b′i, [b2, ..., bk]

?
= [b′1, ..., b

′
i−1,

b′i+1, ..., b
′
m]} ∪ Γ.
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2.3 Complexity

2.3 Complexity

Theorem 2.3.1. The simple unification problem is NP-complete.

Proof. Given a problem P , the finite sets M and G of all meta and ground variables
occurring in P can be found in polynomial time. Let M ′ denote a set of ground variables
not occurring in G and of size |M |. For each metavariable, a non-deterministic machine
either guesses the correct ground variable out of M ′ ∪ G (which is finite) to send the
meta variable to, or fails to find such a variable to conclude the emptiness of the solution
set. One verifies that this covers all the possibilities, since any solution has at most |M |
fresh variables in its image, where their concrete naming is irrelevant. This provides us
with a solution or a failure in non-deterministic linear time, showing that the simple
unification problem lies in NP.

Now, let F := f(X1, ..., Xn) be a boolean formula over the variable space X1, ..., Xn

in conjunctive normal form, where each disjunction has at most 3 variables. The
satisfiability of F , also known as 3-SAT, is known to be to be NP-hard, which we
reduce to a unification problem P . For each variable Xi, i ∈ {1..n}, we identify
Xn+i := ¬Xi and encode this by adding [Xi = Xn+i, Xn+i = Xi]

.
= [t = f, f = t] to

P . Each disjunction is of the form Xi ∨ Xj ∨ Xk, Xi ∨ Xj , or Xi, for which we add
[v = Xi, v = Xj , v = Xk]

.
= [v = t, v = A′, v = A′′], [v = Xi, v = Xj ]

.
= [v = t, v = A′], or

[v = Xi]
.

= [v = t], respectively, where A′ and A′′ occur only once in the whole problem.
Then, F is satisfiable, if and only if P has a solution: If P has a solution, applying

it satisfies F , as each conjunction contains a meta variable which is sent to t. If F is
satisfiable by a mapping b : {X1, ..., Xn} → {t, f}, this is a solution, in particular, for
each conjunction in F , at least one of the variable is mapped to t.
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3 Multiset Extensions

3.1 Single multiset on one side

3.1.1 Problem statement

We now extend the simple unification problem by a new type of variable: multiset
variables, which stand for an unknown number of bindings.

Definition 3.1.1 (multiset variables). We denote MSet = {M0,M1,M2, ...}, or, more
commonly, VarMSet , the set of multiset variables. Elements of VarMSet are called mul-
tiset variables.

To begin with, each expression is only allowed to have at most one multiset variable.

Definition 3.1.2. (single multiset expressions) An expression of variable bindings with
single multiset variables over the variable space V is defined by the following BNF gram-
mar:

ExprSMV ::= ExprV | VarMSet : ExprV

In addition to Definition 2.1.4, we need a new canonical extension for variable substi-
tutions:

Definition 3.1.3. (canonical extensions to single multiset expressions) Given two vari-
able spaces V and W , the extension operator ωExprSM is defined for all f : V →W and
e ∈ Expr:

ωExprSM : (V →W )→ (ExprSMV → ExprSMW )

ωExprSM (f)(e) =

{
M : ωExpr (f)(e′), e = M : e′

ωExpr (f)(e), otherwise

Furthermore, we need a new type of substitution that substitutes a multiset variable
with an expression:

Definition 3.1.4 (multiset substitutions and its application). Multiset substitutions are
functions σ : VarMSet → ExprSMV such that there exists a finite set F where σ |MSet\F is
the constant mapping to ∅.
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3 Multiset Extensions

The following defines the application operator ξ for all multiset substitutions f , which
might be omitted wherever appropriate:

ξ : (VarMSet → ExprSMV )→ (ExprSMV → ExprSMV )

ξ(f)(M : e) =

{
e′ ∪ e, f(M) = e′

M ′ : (e′ ∪ e), f(M) = M ′ : e′

ξ(f)(e) = e

To further simplify the problem, we restrict equations to have only one multiset vari-
able at most.

Definition 3.1.5. An element of a unification problem one-sidedly extended by multisets
is defined by

ProbElUSM ::= ExprM
.

= ExprSMM | ExprSMM
.

= ExprM

A unification problem UnifProbUSM is a finite set of ProbElUSM s.

3.1.2 Solution

SolverEls now use ExprSMM s instead of ExprM s:

SolverElSM ::= ExprSMM
?
= ExprSMM | BindM

?
= BindM | VarM

?
= VarM

The solution to ProbElUSM is given by the rules shown in Figure 3.1 which come as
an addition to our former rules from Figure 2.1.

3.1.3 Correctness

Termination

In addition to µ from the simple unification problem, we count κRMSetVar , the number
of multiset variables on the right side of the equation, as well as κMSetVar the number of
multiset variables. Formally:

κRMSetVar : SolverElSM −→ N0

t1
?
= M : e 7−→ 1

t1
?
= t2 7−→ 0, t2 ∈ Expr

κMSetVar : SolverElSM −→ N0

t1
?
= t2 7−→


1, t1 xor t2 is of the form M : e

2,both are of the form M : e

0, otherwise

18



3.1 Single multiset on one side

E-Set-Application

(Sol, {M : ∅ ?
= [b1, ..., bn]} ∪ Γ)

({M 7→ [b1, ..., bn]} ◦ Sol ,Γ[[b1, ..., bn]/M ])

E-Set-Distribution

(Sol, {M : [b1, ..., bk]
?
= [b′1, ..., b

′
m]} ∪ Γ)

|mi=1 (Sol, {b1
?
= b′i,M : [b2, ..., bk]

?
= [b′1, ..., b

′
i−1, b

′
i+1, ..., b

′
m]} ∪ Γ)

k > 0, m > 0

E-Set-Clash

(Sol , {M : [b1, ..., bk]
?
= ∅} ∪ Γ)

Fail
k > 0

E-Set-Orientation

(Sol , {e1
?
= M : e2} ∪ Γ)

(Sol , {M : e2
?
= e1} ∪ Γ)

Figure 3.1: single set variable on one side of the equation

and

µT∈{RMSetVar ,MSetVar} : SolverSM −→ N0

Γ 7−→
∑
γ∈Γ

κT (γ)

Then, for each rule application, the measure

µSM : SolverSM −→ N7
0

Γ 7−→ (µMSetVar (Γ), µRMSetVar (Γ), µ(Γ))

strictly decreases with respect to the lexicographic ordering on N7
0.

Indeed, the rules from the simple unification problem do not change µRMSetVar or
µMSetVar . E-Set-Application decreases µMSetVar . E-Set-Distribustion reduces µ
and leaves µMSetVar as well as µRMSetVar . E-Set-Clash terminates immediately. E-
Set-Orientation reduces µRMSetVar and does not change µMSetVar .

Rule MSetVar RMSetVar ExprE BExpr BindE VarE RMVar

App dec dec? dec ? - - -
Dist - - dec? dec inc? - -

Orient - dec dec? - - - -

Soundness

For E-Set-Clash there is nothing to show, since it does not yield any result.

E-Set-Application: Assume that for any τ that unifies {M : ∅ ?
= e}∪Γ, τ ◦Sol unifies
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3 Multiset Extensions

Γini. Let τ ′ be a unifier for Γ[e/M ]. To be shown is that τ ′ ◦ {M 7→ e} ◦ Sol unifies

Γini. Choosing τ := τ ′ ◦ {M 7→ e}, τ unifies {M : ∅ ?
= e} ∪ Γ, since {M 7→ e}({M : ∅ ?

=

e} ∪ Γ) = {e ?
= e} ∪ Γ[e/M ] and τ ′ unifies both {e ?

= e} (already unified) and Γ[e/M ].
Hence, τ ◦ Sol = τ ′ ◦ {M 7→ e} ◦ Sol is a unifier for Γini.
E-Set-Distribution: Assume k > 0,m > 0 and that for any τ that unifies {M :

[b1, ..., bk]
?
= [b′1, ..., b

′
m]} ∪ Γ, τ ◦ Sol unifies Γini. Let τ ′ be a unifier for {b1

?
=

b′i,M : [b2, ..., bk]
?
= [b′1, ..., b

′
i−1, b

′
i+1, ..., b

′
m]} ∪ Γ, in particular, τ ′(b1) = τ ′(b′i) and

τ ′(M : [b2, ..., bk]) = τ ′([b′1, ..., b
′
i−1, b

′
i+1, ..., b

′
m]), i.e. τ ′(M) = [m1, ...,ml], l + k − 1 =

m − 1 and there exists a π ∈ Sm with π(i) = 1 and τ ′(mi) = τ ′(bπ(i)) as well as
τ ′(bi) = τ ′(bπ(i+l)) for each appropriate i ∈ N. This makes τ := τ ′ also a unifier of

{M : [b1, ..., bk]
?
= [b′1, ..., b

′
m]} ∪ Γ. Hence, τ ◦ Sol = τ ′ ◦ Sol unifies Γini.

E-Set-Orientation Let τ ′ be a unifier for {M2 : ∅ ?
= M1 : e1} ∪ Γ. Then, τ := τ ′ also

unifies {M1 : e1
?
= M2 : ∅} ∪ Γ, from which one concludes that τ ◦ Sol = τ ′ ◦ Sol unifies

Γini, as needed.

Completeness

Lemma 3.1.1. Lemma 2.2.1 still holds.

Proof. There is still no rule that adds metavariables to Γ. There is no additional rule
changing the behaviour of σ towards metavariables.

Lemma 3.1.2. For each interim result (σ,Γ), if there exists an equation in Γ that
contains an M ∈ VarMSet, then, σ(M) = M .

Proof. By induction on the structure of the derivation of the interim result. Clearly,
the lemma holds for the initialization (id,Γini). One sees that there is no rule that
adds set variables to Γ. As for σ, E-Set-Application is the only rule that changes

it. Assuming Sol does not change set variables occurring in {M : ∅ ?
= [b1, ..., bn]} ∪ Γ,

{M 7→ [b1, ..., bn]} ◦ Sol also does not change set variables occuring in Γ[[b1, ..., bn]/M ],
since M was substituted away.

E-Set-Application: Assume that there exists a substitution τ such that η := τ ◦Sol

solves {M : ∅ ?
= e} ∪ Γ, in particular, τ(M) = τ ◦ Sol(M) = τ ◦ Sol(e) = τ(e) (Sol can

be removed due to Lemmata 2.2.1 and 3.1.2). Then, τ ◦ {M 7→ e} ◦ Sol = η = τ ◦ Sol as
needed, since on both side of the equation, M , as the only variable the change has an
effect, is sent to τ(e). It remains to show that η also solves Γ[e/M ], which holds since it

solved {M : ∅ ?
= e} ∪ Γ, in particular Γ already, and [e/M ] makes no difference since η,

as a solution to {M : ∅ ?
= e}, did not distinguish between M and e anyway.

E-Set-Distribution: Assume k > 0,m > 0 and η solves {M : [b1, ..., bk]
?
= [b′1, ..., b

′
m]}

∪ Γ, in particular, there exists an injection π : {1, ..., k} → {1, ...,m} such that η(bi) =
η(b′π(i)) for each i ∈ {1, ..., k} and η(M) = [b′j | j ∈ {1, ...,m} \ im(π)]. Then, choosing
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3.2 Single true set on both sides

i := π(1), η also solves {b1
?
= b′i,M : [b2, ..., bk]

?
= [b′1, ..., b

′
i−1, b

′
i+1, ..., b

′
m]} ∪ Γ, since

η(b1) = η(b′π(1)) = η(b′i) and η(M : [b2, ..., bk]) = η(M) ∪ [η(b2), ..., η(bk)] = [b′j | j ∈
{1, ...,m} \ im(π)] ∪ [b′j | j ∈ im(π) \ [b′i]] = η([b′1, ..., b

′
i−1, b

′
i+1, ..., b

′
m])

E-Set-Clash: Assuming k > 0, M : [b1, ..., bk]
?
= ∅ can never be solved, making the

statement hold trivially.
E-Set-Orientation: Flipping an equation does not change the property of η as a
solution.

3.2 Single true set on both sides

3.2.1 Problem statement

In this section (3.2), we examine a variant of the unification problem in which expressions
are seen as a true set instead of a multiset.

Definition 3.2.1 (set expressions). When we write [b1, ..., bn] for an expression, we
silently assume that all bindings are distinct, i.e. bi 6= bj for any i, j ∈ {1, ..., n} such
that i 6= j. We write Expr ′ to denote these set expressions.

Definition 3.2.2 (set-equality of expressions). Using the notation above, Definition
2.1.2 can be reinterpreted as describing set-equality.

Definition 3.2.3 (set variables). We interpret multiset variables as set variables and
write VarSet := VarMSet .

Definition 3.2.4 (single set expressions). An expression of variable bindings with single
set variables over the variable space V is defined by:

ExprSSV ::= Expr ′V | VSet : Expr ′V

Canonical extension and set substitutions are analogous to multisets (Definitions 3.1.3
and 3.1.4, respectively).

We now lift the one-sidedness restriction introduced in Definition 3.1.5:

Definition 3.2.5. An element of a unification problem extended by single sets is defined
by:

ProbElSS ::= ExprSS .
= ExprSS

A unification problem UnifProblemSS is a finite set of ProbElSS s.

3.2.2 Solution

SolverEls now use ExprSSM s:

SolverElSM ::= ExprSSM
?
= ExprSSM | BindM

?
= BindM | VarM

?
= VarM

Moreover, we introduce a new type of variable:
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3 Multiset Extensions

Definition 3.2.6. (helper set variables) Elements of the set VarHelp := {Mi

n︷︸︸︷
′...′ | n ∈

N+,Mi ∈ VarMSet} are called helper variables.

Then, the solution to UnifProblemSS is given by the new rules in Figure 3.2 in addition
to our former rules from Figures 2.1 and 3.1, reinterpreted as acting over set expressions.

The old rules as well as their proofs can be reused, as they do not rely on the ability of
expressions to contain duplicate elements, with one exception in the completeness proof
of E-Set-Distribution, demanding η(M) and η(e) to be disjoint if η is a solution and
M : e an expression contained in the solver data structure. As such, solutions that
do not satisfy this property are disregarded by the new algorithm. For example, the
algorithm finds {M 7→ ∅} as the only solution to M : [b1, ..., b9]

.
= [b1, ..., b9], although

{M 7→ [b4, b2]}, {M 7→ [b8, b1, b9]} or {M 7→ [b8, b2, b7, b6]} etc. would also be solutions.
This omission is justified by the fact that, if needed, the missing solutions can be found
easily and, apart therefrom, adding them would result in a combinational blow up of the
size of the solution set (2n − 1 for each M : e where e is of length n).

We make two further changes in the interpretation of the rules: Firstly, we used to
select an element from Γ randomly until now, which can, owing to the last branch of
E-Biset-Distribution, lead to an infinite loop, e.g.:

( Sol , {M1 : [b1]
?
= M2 : [b], M2

?
= M1 : [b]})

({M2 7→M ′2 : [b1]} ◦ Sol , {M1
?
= M ′2 : [b], M ′2 : [b1]

?
= M1 : [b]})

({M1 7→M ′1 : [b1]} ◦ Sol , {M ′1 : [b1]
?
= M ′2 : [b], M ′2

?
= M ′1 : [b]})

...

Both M1 and M2 could contain b1, allowing it to be passed back and forth between

them. For the termination of the new algorithm, we demand that, if |e| < |e′|, M : e
?
= t

is always preferred over M ′ : e′
?
= t′. This is not necessary if we restrict set variables to

be linear.

Secondly, we view unifiers Sol retrieved by the algorithm as the set of all solutions
τ such that Sol ≤[M,Set ] τ , i.e. we restrict (cf. Def. 2.1.10) generality of solutions to
non-helper variables. For example, τ := {M 7→ [a = b, c = d, e = f ]} is a solution to the
problem {M : [a = b]

.
= M : [c = d]}, which would not be an (unrestricted) instantiation

of Sol := {M 7→M ′ : [a = b, c = d], M ′ 7→M ′ : [c = d]}, which the algorithm retrieves,
since, in order to realize τ = λ◦Sol , λ would have to undo {M ′ 7→M ′ : [c = d]}, which it
cannot. Under restriction to [M,Set ], however, Sol =[M,Set ] {M 7→ M ′ : [a = b, c = d]}
holds, enabling us to choose λ := {M ′ 7→ [e = f ]}.

Remark 3.1. During the algorithm in Figure 3.2, for a variable to be fresh it suffices to
add an apostrophe to an existing set variable.

Proof. Let (σ,Γ) be an interim result and M∗ ∈ VarHelp ∪VarSet such that there exists
an equation in Γ that contains M∗. Then, (M∗)′ is fresh, since if it was not, it must
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3.2 Single true set on both sides

E-Biset-Tautology

(Sol , {M : ∅ ?
= M : ∅} ∪ Γ)

(Sol ,Γ)

E-Biset-Orientation

(Sol , {M1 : e1
?
= M2 : ∅} ∪ Γ)

(Sol , {M2 : ∅ ?
= M1 : e1} ∪ Γ)

e1 6= ∅

E-Biset-Application

(Sol , {M1 : ∅ ?
= M2 : e2} ∪ Γ)

({M1 7→M2 : e2} ◦ Sol ,Γ[M2 : e2/M1])
M1 6= M2 or e2 6= ∅

E-Biset-Distribution

(Sol , {M1 : [b1, ..., bk]
?
= M2 : [b′1, ..., b

′
m]} ∪ Γ)

|mi=1 (Sol , {b1
?
= b′i,M1 : [b2, ..., bk]

?
= M2 : [b′1, ..., b

′
i−1, b

′
i+1, ..., b

′
m]} ∪ Γ)

| ({M2 7→M ′2 : [b1]} ◦ Sol , {M ′1 : [b2, ..., bk]
?
= M ′2 : [b′1, ..., b

′
m]} ∪ Γ[M ′2 : [b1]/M2])

where M ′
2 is fresh and M ′

1 := (if M1 = M2 then M ′
2 else M1)

k>0,
m>0

Figure 3.2: single set variable on both sides of the equation

have been added by E-Biset-Distribution, which eliminates M∗ from Γ, disagreeing
with the assumption that Γ contains M∗.

3.2.3 Correctness

Termination

One verifies that any equation of the form M1 : e1
?
= M2 : e2 is treated by a unique rule:

(e1,e2) M1 = M2 M1 6= M2

(∅,∅) Taut App
(>,∅) Orient Orient
(∅,>) App App
(>,>) Dist Dist

In addition to µ from the simple unification problem as well as µRSetVar and µSetVar
reinterpreted from µRMSetVar and µMSetVar from the one-sidedly extended multiset prob-
lem, we monitor µminSetExprL, the smallest of lengths of set-extended expressions occur-
ring on the left-hand side of equations. Formally:
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3 Multiset Extensions

κminSetExprL : SolverSS −→ N0 ∪ {∞}

t1
?
= t2 7−→

{
|e|, t1 = M : e

∞, otherwise

and

µminSetExprL : SolverSS −→ N0 ∪ {∞}
Γ 7−→ min{κminSetExprL(γ) | γ ∈ Γ}

Then, for each rule application, the measure

µSS : SolverSM −→ (N0 ∪ {∞})8

Γ 7−→ (µSetVar (Γ), µRSetVar (Γ), µminSetExprL(Γ), µ(Γ))

strictly decreases with respect to the lexicographic ordering on (N0 ∪ {∞})8.
Indeed, no rule from the simple unification problem changes µSetVar , µRSetVar or

µminSetExprL. E-Set-Application decreases µSetVar . E-Set-Distribution does not
change µSetVar or µRSetV ar and decreases µminSetExprL. E-Set-Orientation decreases
µRSetVar and does not change µSetVar . E-Biset-Tautology decreases µSetVar . E-
Biset-Orientation might decrease µ (BExpr or ExprE), but only decreases µminSetExprL

for sure; all other measures stay the same. E-Biset-Application decreases µSetVar .
E-Biset-Distribution decreases µminSetExprL for sure and does not increase µSetVar or
µRSetVar .

Rule SetVar RSetVar minSetExpL ExprE BExpr BindE V RMV

S-App dec dec? inc? dec ? - - -
S-Dst - - dec dec? dec inc? - -
S-Ori - dec inc? dec? - - - -

Taut dec dec inc? dec - - - -
Orient - - dec dec? dec? - - -
App dec dec inc? dec inc? - - -
Dist1 dec? dec? dec dec? dec inc - -
Dist2 - dec? dec - inc? - - -

Soundness

E-Biset-Tautology: Assume that for any τ that unifies {M : ∅ ?
= M : ∅} ∪ Γ, τ ◦ Sol

unifies Γini. Let τ ′ be a unifier for Γ. To be shown is that τ ′ ◦Sol unifies Γini. Choosing

τ := τ ′, τ unifies {M : ∅ ?
= M : ∅} ∪ Γ, since {M : ∅ ?

= M : ∅} is already unified. Hence,
τ ′ ◦ Sol is a unifier for Γini.

E-Biset-Orientation: Assume that for any τ that unifies {M1 : e1
?
= M2 : ∅} ∪ Γ,

24



3.2 Single true set on both sides

τ ◦ Sol unifies Γini. Let τ ′ be a unifier for Γ′. To be shown is that τ ′ ◦ Sol unifies Γini.

Choosing τ := τ ′, τ unifies {M1 : e1
?
= M2 : ∅} ∪ Γ, since equality is symmetric. Hence,

τ ′ ◦ Sol is a unifier for Γini.

E-Biset-Application: Assume that for any τ that unifies {M1 : ∅ ?
= M2 : e2}∪Γ, τ◦Sol

unifies Γini. Let τ ′ be a unifier for Γ[M2 : e2/M1]. To be shown is that τ ′ ◦ {M1 7→M2 :

e2}◦Sol unifies Γini. Choosing τ := τ ′◦{M1 7→M2 : e2}, τ unifies {M1 : ∅ ?
= M2 : e2}∪Γ,

since applying {M1 7→ M2 : e2} gives {M2 : e2
?
= M2 : e2} ∪ Γ[M2 : e2/M1], which τ ′

solves, since the former is already solved and the latter is part of the assumption for τ ′.
Hence, τ ′ ◦ {M1 7→M2 : e2} ◦ Sol is a unifier for Γini.

E-Biset-Distribution: Assume that for any τ that unifies {M1 : [b1, ..., bk]
?
= M2 :

[b′1, ..., b
′
m]} ∪ Γ, τ ◦ Sol unifies Γini.

Let τ ′ be a unifier for {b1
?
= b′i,M1 : [b2, ..., bk]

?
= M2 : [b′1, ..., b

′
i−1, b

′
i+1, ..., b

′
m]} ∪ Γ, in

particular, τ ′(b1) = τ ′(b′i). To be shown is that τ ′ ◦ Sol unifies Γini. Choosing τ := τ ′,

τ unifies {M1 : [b1, ..., bk]
?
= M2 : [b′1, ..., b

′
m]} ∪ Γ, since both sides of the equation were

extended by a binding which are the same under τ = τ ′. Hence, τ ′ ◦ Sol is a unifier for
Γini.

Let τ ′ be a unifier for {M ′1 : [b2, ..., bk]
?
= M ′2 : [b′1, ..., b

′
m]}∪Γ[M ′2 : [b1]/M2]. To be shown

is that τ ′ ◦ {M2 7→ M ′2 : [b1]} ◦ Sol unifies Γini. Choosing τ := τ ′ ◦ {M2 7→ M ′2 : [b1]},
τ unifies {M1 : [b1, ..., bk]

?
= M2 : [b′1, ..., b

′
m]} ∪ Γ, since applying {M2 7→ M ′2 : [b1]}

gives {M ′1 : [b1, ..., bk]
?
= M ′2 : [b1, b

′
1, ..., b

′
m]} ∪ Γ[M ′2 : [b1]/M2] which τ ′ solves, since the

former is almost the same equation τ ′ already solved, only that b1 was added on both
sides, which does not affect the validity of τ ′ as a solution, and the latter is part of the
assumption for τ ′. Hence, τ ′ ◦ {M2 7→M ′2 : [b1]} ◦ Sol is a unifier for Γini.

Completeness

Lemma 3.2.1. For each interim result (σ,Γ), if there exists an equation in Γ that has
an M : e ∈ ExprSMM on one (or both) of its sides, then, σ(M : e) = M : e.

Proof. By induction on the derivation of the interim result. The statement clearly holds
for the initialization. E-Biset-Distribution can add set variables, which are, however,
fresh, such that σ does not affect them. There is no other rule adds set variables.
E-Set-Application and E-Biset-Distribution both make σ change an additional
set variable, which is, however, eliminated immediately from Γ.
In E-Biset-Application, if M1 6= M2, M1 is eliminated from Γ, making the change
{M1 7→ M2 : e2} not affect this lemma. If M1 = M2, σ is extended by {M2 7→ M2 : e2}
and Γ is changed to Γ[M2 : e2/M2], i.e. any occurence of M2 : e in Γ is replaced by
M2 : (e∪e2). Then, applying {M2 7→M2 : e2}◦σ still complies with our statement, since,
due to Lemma 2.2.1 (σ(e) = e) and the induction hypothesis (σ(M2 : e2) = M2 : e2),

{M2 7→M2 : e2} ◦ σ(M2 : (e ∪ e2)) = {M2 7→M2 : e2}(M2 : (e ∪ e2)) = M2 : (e ∪ e2).

All other rules leave σ unchanged.
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3 Multiset Extensions

E-Biset-Tautology: If η solves {M : ∅ ?
= M : ∅} ∪ Γ, it also must have solved its

subset Γ.
E-Biset-Orientation: Flipping an equation does not change the property of η as a
solution.
E-Biset-Application: Assume M1 6= M2 or e2 6= ∅ and that there exists a substitution

τ such that η := τ ◦ Sol solves {M1 : ∅ ?
= M2 : e2} ∪ Γ, in particular, e := η(M1) =

η(M2 : e2). From Lemma 3.2.1 we know that one can write Sol(M1) = M1 : e′1. It is
clear that τ(e′1) ⊆ τ(e′1) ∪ τ(M1) = τ(M1 : e′1) = e. Then, τ ◦ Sol = η = τ ◦ {M1 7→
Sol(M2 : e2)} ◦ Sol as needed, since on both sides of the equation, for M1 — the only
variable the change has an effect on — the following holds:

τ ◦ {M1 7→M2 : e2} ◦ Sol(M1) =τ ◦ {M1 7→M2 : e2}(M1 : e′1)

=τ(M2 : (e′1 ∪ e2))

=τ(M2 : e2) ∪ τ(e′1)

=τ(M2 : e2)
3.2.1
= τ(Sol(M2 : e2)) = τ ◦ Sol(M1)

It remains to show that η also solves Γ[M2 : e2/M1], which holds since it already solved
Γ and [M2 : e2/M1] makes no difference since η did not distinguish between M2 : e2 and
M1 anyway.
E-Biset-Distribution: Assume k > 0,m > 0 and that there exists a substitution τ

such that η := τ ◦Sol solves {M1 : [b1, ..., bk]
?
= M2 : [b′1, ..., b

′
m]}∪Γ, in particular, η(M1 :

[b1, ..., bk]) = η(M2 : [b′1, ..., b
′
m]). There are two cases to consider: In case η(b1) = η(b′i)

for an i, then, η also solves {b1
?
= b′i,M1 : [b2, ..., bk]

?
= M2 : [b′1, ..., b

′
i−1, b

′
i+1, ..., b

′
m]} ∪ Γ

by the same argumentation as in the proof for E-Set-Distribution.
In case τ ◦ Sol(b1) = τ(b1) ∈ η(M2) \ η([b′1, ..., b

′
m]) (Sol can be removed due to Lemma

2.2.1), choosing τ ′ := τ ◦ {M ′2 7→ η(M2) \ [τ(b1)]},

τ ′ ◦ {M2 7→M ′2 : [b1]} ◦ Sol(M2) =τ ′ ◦ {M2 7→M ′2 : [b1]}(M2 : e′2)

=τ ′(M ′2 : ([b1] ∪ e′2))

=τ ′(M ′2 : e′2) ∪ τ ′([b1])

=(τ(M2 : e′2) \ [τ(b1)]) ∪ [τ(b1)]

=τ(M2 : e′2) = η(M2) = τ ◦ Sol(M2),

showing τ ′ ◦ {M2 7→M ′2 : [b1]} ◦ Sol =[M,Set ] τ ◦ Sol .

It remains to show that η also solves {M ′1 : [b2, ..., bk]
?
= M ′2 : [b′1, ..., b

′
m]} ∪ Γ[M ′2 :

[b1]/M2]. Since all properties to be shown are restricted to non-helper variables, we
can make the following transformation: η ≥ {M2 7→ η(M2)} =[VarMSet ] {M

′
2 7→ η(M2) \

η(b1)} ◦ {M2 7→ M ′2 : η([b1])} = {M2 7→ η(M2),M ′2 7→ η(M2) \ η(b1)}, in other words,
η(M2) = η([b1]) ∪ η(M ′2). Then, one sees immediately that [M ′2 : [b1]/M2] makes no
difference and, if M1 = M2, η(M ′2 : [b2, ..., bk]) = η(M1 : [b1, ..., bk]) \ η([b1]) = η(M2 :
[b′1, ..., b

′
m]) \ η([b1]) = η(M ′2 : [b′1, ..., b

′
m]) as well as, if M1 6= M2, η(M1 : [b2, ..., bk]) =

η(M1 : [b1, ..., bk]) \ η([b1]) = η(M2 : [b′1, ..., b
′
m]) \ η([b1]) = η(M ′2 : [b′1, ..., b

′
m]).
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3.3 Single multiset on both sides

3.3 Single multiset on both sides

3.3.1 Problem statement

In this section (3.3), expressions are seen as a multiset again, instead of a true set like
in Section 3.2. As in Definitions 3.2.4 and 3.2.5, we allow at most one multiset variable
in both sides of the equation.

3.3.2 Solution

All constructs and reinterpretations introduced in Section 3.2.2 remain valid. Concretely:

1. We use helper variables (Def. 3.2.6).

2. We do not choose rules randomly, as this could result in an infinite loop, due to the
second branch of E-Mset-Distribution. Instead, whenever |e| < |e′|, we favor

M : e
?
= t over M ′ : e′

?
= t′.

3. ≤ is restricted to non-helper variables.

Under these prerequisites, the new rules in Figure 3.3, together with the rules in Figure
3.1 and 2.1, solve the unification problem with single multisets on both sides.

3.3.3 Correctness

Termination

One verifies that any equation of the form M1 : e1
?
= M2 : e2 is treated by a unique rule:

(e1,e2) M1 = M2 M1 6= M2

(∅,∅) Taut App
(>,∅) Orient Orient
(∅,>) Clash App
(>,>) Sem-Taut Distr

We use the same measure as in the version for true sets, where µSetV ar and µRSetV ar
are used again (as in the one-sided multiset extension), and µminSetExprL is reinterpreted
to act on multisets under the name µminMSExprL.

E-Mset-Clash terminates immediately. E-Mset-Semi-Tautology reduces µSetVar .
All other rules are either the same (Figures 2.1 and 3.1), only a renaming (Tautology,
Orientation) or a subset of a rule from Figure 3.2 (Application, Distribution).
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3 Multiset Extensions

E-Mset-Tautology

(Sol , {M : ∅ ?
= M : ∅} ∪ Γ)

(Sol ,Γ)

E-Mset-Orientation

(Sol , {M1 : e1
?
= M2 : ∅} ∪ Γ)

(Sol , {M2 : ∅ ?
= M1 : e1} ∪ Γ)

e1 6= ∅

E-Mset-Application

(Sol , {M1 : ∅ ?
= M2 : e2} ∪ Γ)

({M1 7→M2 : e2} ◦ Sol ,Γ[M2 : e2/M1])
M1 6= M2

E-Mset-Clash

(Sol , {M : ∅ ?
= M : e} ∪ Γ)

Fail
e 6= ∅

E-Mset-Semi-Tautology

(Sol , {M : e1
?
= M : e2} ∪ Γ)

(Sol , {e1
?
= e2} ∪ Γ)

e1 6= ∅, e2 6= ∅

E-Mset-Distribution

(Sol , {M1 : [b1, ..., bk]
?
= M2 : [b′1, ..., b

′
m]} ∪ Γ)

|mi=1 (Sol , {b1
?
= b′i,M1 : [b2, ..., bk]

?
= M2 : [b′1, ..., b

′
i−1, b

′
i+1, ..., b

′
m]} ∪ Γ)

| ({M2 7→M ′2 : [b1]} ◦ Sol , {M1 : [b2, ..., bk]
?
= M ′2 : [b′1, ..., b

′
m]} ∪ Γ[M ′2 : [b1]/M2])

where M ′
2 is fresh

M1 6=M2,
k>0,m>0

Figure 3.3: single set variable on both sides of the equation
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3.4 Full multiset extension

Soundness

E-Mset-Clash: There is nothing to show.

E-Mset-Semi-Tautology: Assume that for any τ that unifies {M : e1
?
= M : e2} ∪ Γ,

τ ◦ Sol unifies Γini. Let τ ′ be a unifier for {e1
?
= e2} ∪ Γ, in particular, τ ′(e1) = τ ′(e2).

Then, τ ′ unifies {M : e1
?
= M : e2} ∪ Γ, since τ ′(M : e1) = τ ′(M) ∪ τ ′(e1) = τ ′(M) ∪

τ ′(e2) = τ ′(M : e2) and τ ′ already unifies Γ. Thus, applying the assumption, τ ′ ◦ Sol
unifies Γini, as needed.
All other rules can be proven by using their Biset-equivalents.

Completeness

E-Mset-Clash: Assuming e 6= ∅, {M : ∅ ?
= M : e} can never be unified, as η(∅) =

∅ 6= η(e) in contradiction to what η(M : ∅) = η(M : e) would imply with Lemma 2.1.1,
confirming the statement trivially.

E-Mset-Semi-Tautology: Assume η unifies {M : e1
?
= M : e2} ∪ Γ, in particular,

η(M : e1) = η(M) ∪ η(e1) = η(M) ∪ η(e2) = η(M : e2), implying η(e1) = η(e2) with

Lemma 2.1.1, precisely what is needed for η to unify {e1
?
= e2} ∪ Γ.

All other rules can be proven by using their Biset-equivalents.

3.4 Full multiset extension

3.4.1 Problem statement

We now lift the restriction that only one set variable per expression is allowed.

Definition 3.4.1 (fully multiset-extended expressions). A fully multiset-extended ex-
pression of variable bindings over the variable space V is defined by:

ExprFV ::= ExprV |M : ExprV

where M = [Mi, ...,Mj ] is a multiset over VarMSet . We write [Mn] for [M, ...,M︸ ︷︷ ︸
n

] and

omit the square braces when n = 1 and inside an expression.

Definition 3.4.2. An element of a fully multiset-extended unification problem is defined
by:

ProbElF ::= ExprF
.

= ExprF

A fully multiset-extended unification problem is a finite set of ProbElF s.

Canonical extensions and multiset substitutions are defined analogous to Definitions
3.1.3 and 3.1.4.
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3 Multiset Extensions

3.4.2 Solution

We introduce new types of helper variables:

Definition 3.4.3 (branching helper variables). Let M,N ∈ VarMSet be variables, n ∈
N0. Then, T (M,N) ′..′︸︷︷︸

n

is a branching helper variable.

Definition 3.4.4 (memorizing helper variables). Let n ∈ N0. A memorizing helper
variable Mα

′..′︸︷︷︸
n

carries an expression α as part of its defining data.

Definition 3.4.5 (block helper variables). Let i, n ∈ N0. A meta-block helper variable
Ni

′..′︸︷︷︸
n

distinguishes itself by sometimes (but not necessarily) being written in bold-face.

A ground-block helper variable Ni ′..′︸︷︷︸
n

is written calligraphic font.

Definition 3.4.6 (block equation). We call equations of the form [Mc] : e1
?
= N : e2

“block”.

All constructs and reinterpretations introduced in Section 3.2.2 remain valid (the use
of normal helper variables, order of rule applications, restriction of ≤). Furthermore, the
rule X-Semi-Tautology is favoured over all other rules, overriding the preference of

M : e
?
= t over M ′ : e′

?
= t′ for |e| < |e′|, if necessary. Also, block equations are preferred

over other equations.
The solution is obtained by the rules in Figure 3.4 in addition to Figure 2.1 excluding

the E-rules, where, in X-Partition, Z(e, r) is the set of “r-partitions” of e defined as
follows:

Definition 3.4.7 (r-partitions). Let r ∈ N+. The set of r-partitions of the simple
expression ε is defined as

Z(ε, r) := {ζ : {1..r} → 2ε |
⋃

j∈{1..m}

ζ(j) = ε}.

3.4.3 Correctness

Termination

One verifies that any non-block equation of the form M1 : e1
?
= M2 : e2 as well as

any block equation is treated by a unique rule: if M1 ∩M2 6= ∅, X-Semi-Tautology
is chosen and else as in Table 3.1. As soon as block equations are introduced by X-
Partition into the solver set, they are preferred over the other equations until every
block equation is eliminated by X-Rep-Base. During that process, all these block
equations can be treated independently from each other, as no two block equations
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3.4 Full multiset extension

X-Semi-Tautology

(Sol , {M : e1
?
= N : e2} ∪ Γ)

(Sol , {(M \N) : e1
?
= (N \M) : e2} ∪ Γ)

M ∩N 6= ∅

If M ∩N = ∅:

X-Orientation

(Sol , {M1 : e1
?
= M2 : ∅} ∪ Γ)

(Sol , {M2 : ∅ ?
= M1 : e1} ∪ Γ)

e1 6=∅
eqn. not block

X-Clash

(Sol , ∅ ?
= M : e)

Fail
e 6= ∅

X-Distribution

(Sol , {M : [b1, ..., bk]
?
= [N1, ..., Np] : [b′1, ..., b

′
m]} ∪ Γ)

|mi=1 (Sol , {b1
?
= b′i,M : [b2, ..., bk]

?
= [N1, ..., Np] : [b′1, ..., b

′
i−1, b

′
i+1, ..., b

′
m]} ∪ Γ)

|pi=1 (ν ◦ Sol , {M : [b2, ..., bk]
?
= (ν([N1, ..., N

′
i , ..., Np])) : [b′1, ..., b

′
m]} ∪ ν(Γ))

where N ′
i is fresh and ν = {Ni 7→ N ′

i : [b1]}

k>0,
m>0

X-Emp-Application

(Sol , {[M1, ...,Mq] : ∅ ?
= [N1, ..., Np] : ∅} ∪ Γ)

(µν ◦ Sol , µν(Γ))
where µ = {Mi 7→ [T(Mi,Nj) | j ∈ [1..p]] | i ∈ {1..q}}
and ν = {Nj 7→ [T(Mi,Nj) | i ∈ [1..q]] | j ∈ {1..p}}

eqn. is not block

X-Partition

(Sol , {[M1,M1, ...,Mr,Mr] : ∅ ?
= [N1, ..., Np] : e} ∪ Γ)

|ζ∈Z(e,r) (µ ◦ Sol , {[Mci
αi

]
?
= Ni : ζ(i) |i∈{1..r}} ∪ {[N1..Np]

?
= [N1..Nr]} ∪ µ(Γ))

where Mi occurs ci times in [M1,M1, ...,Mr,Mr],

µ = {Mi 7→ Mαi
|i∈{1..r}} ◦ {Nj 7→ [Nj ] ∪ [T(Mi,Nj) |i∈[1,1..r]] |j∈{1..p}}

and αi = [T(Mi,Nj) | j ∈ {1..p}]

r>0,
e6=∅,

eqn n-blc

X-Rep-Distribution

(Sol , {[Mc] : ∅ ?
= N : [b1, ..., bn]} ∪ Γ)

({M 7→M′ : [b1]} ◦ Sol , {[(M′)c] : [bc−1
1 ]

?
= N : [b2, ..., bn]} ∪ Γ[M′ : [b1]/M])

n > 0

X-Rep-Base

(Sol , {[Mc
α] : e

?
= N : ∅} ∪ Γ)

({Mα 7→ α, N 7→ e} ◦ Sol ,Γ[α/Mα, e/N])

Figure 3.4: Algorithm for the unification problem fully extended by multisets
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3 Multiset Extensions

(e1,e2) M1 = ∅ M1 6= ∅ block

(∅,∅) X-Emp-Application
X-Rep-Base

(>,∅) X-Orientation

(∅,>) X-Clash X-Partition X-Rep-Distribution

(>,>) X-Distribution

Table 3.1: Rule switch

Mc ?
= N : e

Mc : bd
?
= N : e

elim.

Partition

R-Distr
e 6= ∅

e = ∅
R-Base

R-Base
e = ∅

Distr
d = 1,e 6= ∅

Distr, d > 1,e 6= ∅

Figure 3.5: Treatment of block equations

share the same set variable. This process, visualized in Figure 3.5, terminates, since
the measures decrease as shown in Table 3.2. As can be seen in the visualization, all
block equations end in X-Rep-Base, such that all Ni created in X-Partition will be
instantiated by some expression ei. Thus, X-Partition, X-Rep-Distribution and X-
Rep-Base can be, for the sake of this proof, shortened to a single rule, X-S-Partition,
as shown in Figure 3.6. Then, the measures decrease as shown in Table 3.3.

Soundness

X-Semi-Tautology: Assume M∩N 6= ∅ and that for any τ that unifies {M : e1
?
= N :

e2} ∪ Γ, τ ◦ Sol unifies Γini. Let τ ′ be a unifier for {(M \N) : e1
?
= (N \M) : e2} ∪ Γ.

X-S-Partition

(Sol , {[M1,M1, ...,Mr,Mr] : ∅ ?
= [N1, ..., Np] : e} ∪ Γ)

|many branches (µ ◦ Sol , {[N1, ...,Np]
?
=

⋃
i∈{1..r}

ei} ∪ µ(Γ))

where µ treats the Mi and Nj appropriately.

r>0,
e6=∅,

eqn n-blc

Figure 3.6: Shortened partition
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3.4 Full multiset extension

Rule # of block eqn |e| d

Distr - dec? dec
Rep-Dst - dec inc?
Rep-Base dec - dec?

Table 3.2: Changes in the measures (block)

Rule ExprE minBEL SetVar BExpr BindE VarE RMVar

V-Taut - - - - - dec dec?
V-App dec? - - dec? dec? dec dec?
V-Ori - - - - - dec? dec
B-Dec - - - - dec inc? inc?
E-Taut dec inc? - - - - -

X-SemT - - dec - - - -
X-Ori - dec dec? - - - -
X-Dst1 dec? dec ? ? - - -
X-Dst2 dec? dec ? ? - - -
X-E-App dec inc? ? - - - -
X-S-Part dec? - dec inc? - - -

Table 3.3: Changes in the measures

Then τ := τ ′ unifies {M : e1
?
= N : e2}∪Γ since Γ was not changed and both sides of the

equation were extended by the same set of set variables, namely M∩N. Hence, τ ′ ◦ Sol
unifies Γini.
X-Orientation: Clear.
X-Clash: There is nothing to show.
X-Distribution: Assume that for any τ that unifies Γ, τ ◦ Sol unifies Γini.

Let τ ′ be a unifier for {b1
?
= b′i,M : [b2, ..., bk]

?
= N : [b′1, ..., b

′
i−1, b

′
i+1, ..., b

′
m]} ∪ Γ. Then

τ := τ ′ unifies {M : [b1, ..., bk]
?
= N : [b′1, ..., b

′
m]} ∪ Γ since the latter was already unified

and the former is almost M : [b2, ..., bk]
?
= N : [b′1, ..., b

′
i−1, b

′
i+1, ..., b

′
m] which τ also

unified already, only that b1 and b′1 were added to each side respectively, which are not
distinguished under τ . Hence τ ′ ◦ Sol unifies Γini.

Now, let τ ′ be a unifier for {M : [b2, ..., bk]
?
= (N[N ′i : [b1]/Ni] \ [b1]) : [b′1, ..., b

′
m]}∪Γ[N ′i :

[b1]/Ni]. We point out M ∩ N = ∅, since potential intersections were already removed
by X-Semi-Tautology. Thus, we can safely assume {N 7→ t}M = M for any N ∈ N.

Then τ := τ ′ ◦ {Ni 7→ N ′i : [b1]} unifies {M : [b1, ..., bk]
?
= N : [b′1, ..., b

′
m]} ∪ Γ since

applying {Ni 7→ N ′i : [b1]} yields {M : [b1, ..., bk]
?
= N[N ′i : [b1]/Ni] : [b′1, ..., b

′
m]} ∪ Γ[N ′i :

[b1]/Ni], which τ ′ unifies, since the latter is part of the assumption and the former is

{M : [b2, ..., bk]
?
= (N[N ′i : [b1]/Ni] \ [b1]) : [b′1, ..., b

′
m]} with just a b1 added at both sides.

Hence τ ′ ◦ {Ni 7→ N ′i : [b1]} ◦ Sol unifies Γini.
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3 Multiset Extensions

X-Emp-Application: Assume the equation is non-block and that for any τ that unifies

{[M1, ...,Mq] : ∅ ?
= [N1, ..., Np] : ∅} ∪ Γ, τ ◦ Sol unifies Γini. Let τ ′ be a unifier for µνΓ.

To be shown is that τ ′µν ◦ Sol unifies Γini. Choosing τ := τ ′µν, τ unifies {[M1, ...,Mq] :

∅ ?
= [N1, ..., Np] : ∅} ∪ Γ, since applying µν yields {[T(Mi,Nj) | (i, j) ∈ {1..q} × {1..p}] :

∅ ?
= [T(Mi,Nj) | (i, j) ∈ {1..q} × {1..p}] : ∅} ∪ µν(Γ), which τ ′ unifies, since the latter is

part of the assumption and the former is already unified. Hence, τ ′µν ◦ Sol unifies Γini.
X-Partition: For [T(Mi,Nj) | i ∈ [1..r], j ∈ [1..p]] we write [TM,N |ij ]. This rule is not
sound in itself, but only in combination with X-Rep-Base. Assume the equation is

non-block, r > 0, e 6= ∅ and that for any τ that unifies {[M1,M1, ...,Mr,Mr] : ∅ ?
=

[N1, ..., Np] : e} ∪ Γ, τ ◦ Sol unifies Γini. Let ζ be an r-partition of e and τ ′ a unifier

for {[Mci
αi

]
?
= Ni : ζ(i) |i∈{1..r}} ∪ {[N1..Np]

?
= [N1..Nr]} ∪ µ(Γ). To be shown is that

τ ′µ ◦ Sol unifies Γini : Choosing τ := τ ′µ, τ unifies Γ. That τ unifies Γ (τ ′ unifies µ(Γ))

is part of the assumption. Applying µ on the input equation yields
⋃
i∈{1..r}[Mci

αi
] : ∅ ?

=

[N1, ...,Np] ∪ [TM,N |ij ] : e. Since τ ′ unifies [N1..Np]
?
= [N1..Nr], we can change the

right-hand side to [N1, ...,Nr] ∪ [TM,N |ij ] : e. Similarly, using the fact that τ ′ unifies

[Mci
αi

]
?
= Ni : ζ(i) for each i, we can turn the left-hand side into [N1, ...,Nr] : e. The

new equation, [N1, ...,Nr] : e
?
= [N1, ...,Nr] ∪ [TM,N |ij ] : e, is not unified as the left-

hand side is missing a [TM,N |ij ]. We augment this later in X-Rep-Base, by adding
an extra αi = [T(Mi,Nj) | j ∈ {1..p}] to each Ni, only in the first equation. In other
words, provided that τ ′ is an “almost-unifier” in the sense that it is an (in a coordinated
manner) ill-defined substitution that unifies the Ni in the first equation against too
much, τ ′µ ◦ Sol is indeed a unifier for Γini .

X-Rep-Distribution: Assume that for any τ that unifies {[Mc] : ∅ ?
= N : [b1, ..., bn]}∪

Γ, τ ◦ Sol unifies Γini. Let τ ′ be a unifier for {[(M′)c] : [bc−1
1 ]

?
= N : [b2, ..., bn]} ∪ Γ[M′ :

[b1]/M]. To be shown is that τ ′ ◦ {M 7→ M′ : [b1]} ◦ Sol unifies Γini. Choosing

τ := τ ′ ◦ {M 7→ M′ : [b1]}, τ unifies {[Mc] : ∅ ?
= N : [b1, ..., bn]} ∪ Γ, since applying

{M 7→ M′ : [b1]} yields [(M′)c] : [bc1]
?
= N : [b1, ..., bn], which is almost exactly the

output equation, with the only difference that a b1 was added to both sides. This is, by
assumption, unified by τ ′. Hence, τ ′ ◦ {M 7→M′ : [b1]} ◦ Sol is a unifier for Γini.
X-Rep-Base: This rule is, again, not sound in itself, but only in combination with X-

Partition. Assume that for any τ that unifies {[Mc
α] : e

?
= N : ∅}∪Γ, τ ◦Sol unifies Γini.

Let τ ′ be a unifier for Γ[α/Mα, e/N]. To be shown is that τ ′ ◦{Mα 7→ α, N 7→ e}◦Sol

unifies Γini. Choosing τ := τ ′ ◦ {Mα 7→ α, N 7→ e}, τ unifies {[Mc
α] : e

?
= N : ∅} ∪ Γ,

since applying {Mα 7→ α, N 7→ e} yields {[αc] : e
?
= e}∪Γ[α/Mα, e/N]. The unification

of the latter is part of the assumption for τ ′. The former equation is not unified, as the
left-hand side has an extra [αc]. But this was exactly what was needed to augment the
missing variables in X-Partition. Hence, provided that Sol was missing exactly [αc]
for N (which it does), τ ′ ◦ {Mα 7→ α, N 7→ e} ◦ Sol unifies Γini indeed.
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3.4 Full multiset extension

Completeness

Lemma 3.4.1. If (σ,Γ) is an interim result and Mi, Nj are multiset variables occuring
in Γ, T(Mi,Nj) does not occur in Γ. Mαi (where α is as described in X-Partition) and
Nj as well as Nj also do not occur in Γ

Proof. X-Emp-Application and X-Partition introduce branching helper variables,
but eliminate all of the affected variables immediately. The same is the case for the
remaining types of helper variables.

Lemma 3.4.2. If (σ,Γ) is an interim result and Γ contains M ∈ VarMSet , then σ(M) =
M .

Proof. X-Distribution, X-Emp-Application and X-Partition add set variables,
but only fresh ones (Lemma 3.4.2), not affecting σ. Other rules do not add variables.
X-Distribution, X-Emp-Application, X-Partition and X-Rep-Base also change
σ to touch additional set variables, of which the affected ones, however, are eliminated
immediately.

X-Semi-Tautology: Assume η solves {M : e1
?
= N : e2} ∪ Γ. Then, η also solves

{(M \N) : e1
?
= (N \M) : e2} ∪ Γ, as the same set of set variables were removed from

both sides of the equation, namely M ∩N.
X-Orientation: Clear.
X-Clash: Holds trivially, since ∅ ?

= M : e can never be under the assumption e 6= ∅.
X-Distribution: Assume that there exists a substitution τ such that η := τ ◦Sol solves

{M : [b1, ..., bk]
?
= N : [b′1, ..., b

′
m]} ∪ Γ.

For b1, there are two cases to consider. Firstly, if there exists an i ∈ {1, ...,m} such that

η(b1) = η(b′i), then, η also solves {b1
?
= b′i,M : [b2, ..., bk]

?
= N : [b′1, ..., b

′
i−1, b

′
i+1, ..., b

′
m]}∪

Γ, since it solved Γ already, solving b1
?
= b′i was the assumption for this case and M :

[b2, ..., bk]
?
= N : [b′1, ..., b

′
i−1, b

′
i+1, ..., b

′
m]} is just {M : [b1, ..., bk]

?
= N : [b′1, ..., b

′
m]} with a

binding removed from each side which are the same under η.
Secondly, if there exists an i ∈ {1, ..., p} such that η(b1) ∈ η(Ni), then, choosing τ ′ :=
τ ◦ {N ′i 7→ η(Ni) \ [η(b1)]}, for Ni, the only variable the change could have an effect,

τ ′ ◦ {Ni 7→ N ′i : [b1]} ◦ Sol(Ni) = τ ′ ◦ {Ni 7→ N ′i : [b1]}(Ni)

= τ ′(N ′i : [b1])

= τ(η(Ni) \ [b1] : [b1])

= τ(η(Ni)) = η(Ni)

and hence τ ′ ◦ {Ni 7→ N ′i : [b1]} ◦ Sol(Ni) = η as needed. It remains to show that

η also solves {M : [b2, ..., bk]
?
= (N[N ′i : [b1]/Ni] \ [b1]) : [b′1, ..., b

′
m]} ∪ Γ[N ′i : [ba]/Ni].

Under restriction to non-helper variables, one can make the following transformation:
η ≥ {Ni 7→ η(Ni)} =[¬VarHelp ] {N ′i 7→ η(Ni) \ η([b1])} ◦ {Ni 7→ N ′i : η([b1])} = {Ni 7→
η(Ni), N

′
i 7→ η(Ni) \ η([b1])}, in other words, η(Ni) = η([b1]) ∪ η(N ′i). Then, one sees
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3 Multiset Extensions

that [N ′i : [b1]/Ni] makes no difference on Γ and η(M : [b2, ..., bk]) = η(M : [b1, ..., bk]) \
η([b1]) = η(N : [b′1, ..., b

′
m]) \ η([b1]) = η((N[N ′i : [b1]/Ni] \ [b1]) : [b′1, ..., b

′
m]).

X-Emp-Application: Assume that there exists a substitution τ such that η := τ ◦ Sol

solves {[M1, ...,Mq] : ∅ ?
= [N1, ..., Np] : ∅} ∪ Γ. Let t(i,j) denote the Mi-Nj-component

such that η([M1, ...,Mq]) =
⋃

(i,j)∈{1..q}×{1..p} t(i,j) = η([N1, ..., Np]). Choosing τ ′ :=

τ ◦ {T(Mi,Nj) 7→ t(i,j)}, we obtain η = τ ′µν ◦ Sol , since

τ ′µν ◦ Sol(Mi) = τ ′µ(Mi) = τ ′([T(Mi,Nj) | j ∈ {1..p}])
=

⋃
j∈{1..p} t(i,j) = η(Mi)

and

τ ′µν ◦ Sol(Nj) = τ ′µν(Nj) = τ ′([T(Mi,Nj) | i ∈ {1..q}])
=

⋃
i∈{1..q} t(i,j) = η(Nj)

which suffices, as all other variables remain unaffected by the change. It remains to show
that η also solves µν(Γ). The assumption that η = τ ′µνSol = τ ′µνSol ◦ µν solves Γ
immediately confirms the property of η being a solution also to µν(Γ).
X-Partition: This rule is complete in itself, but in order to prove the completeness
of X-Rep-Base later, we conduct a slightly wrong proof. Assume that there exists a

substitution τ such that η := τ◦Sol solves {[M1,M1, ...,Mr,Mr] : ∅ ?
= [N1, ..., Np] : e}∪Γ.

In particular, there exist the r-partitions χ of η([N1, ..., Np]) and ζ of e such that for
each i ∈ {1..r}, η(M ci

i ) = χ(i) ∪ τ(ζ(i)), or as a whole, η([M1,M1, ...,Mr,Mr]) =⋃
i∈{1..r}(χ(i)∪τ(ζ(i))) = η([N1, ..., Np] : e). We now separate an “indefinite” amount βi

off from each η(Mi) such that χ(i) = χ′(i)∪βci (this ensures that βi is also a sub-multiset
of η([N1, ..., Np])). We further separate βi into p parts, such that βi =

⋃
j∈{1..p} ti,j where

for each j, ti,j comes from η(Nj) (i.e. γj :=
⋃
i∈[1,1..r] ti,j with η(Nj) = nj ∪ γj). We call

t := [ti,j | i ∈ [1, 1..r], j ∈ {1..p}]. We would obtain the “correct” proof for X-Partition
by setting ti,j = ∅ for all i and j. To be shown is the existence of a substitution τ ′ such

that η = τ ′µ ◦ Sol solves {[Mci
αi

]
?
= Ni : ζ(i) |i∈{1..r}} ∪ {[N1..Np]

?
= [N1..Nr]} ∪ µ(Γ).

Choosing τ ′ := τ ◦{Ni 7→ χ′(i),Mαi 7→ τ(Mi) |i∈{1..r}}◦{Nj 7→ nj |j∈{1..p}}◦{T(Mi,Nj) 7→
ti,j |(i,j)∈{1..r}×{1..p}}, we obtain η = τ ′µ ◦ Sol , since

τ ′µ ◦ Sol(Mi) = τ ′µ(Mi) = τ ′(Mαi)

= τ(Mi) = τ ◦ Sol(Mi)

as well as

τ ′µ ◦ Sol(Nj) = τ ′µ(Nj) = τ ′(Nj ∪ [T(Mi,Nj) |i∈[1,1..r]])

= nj ∪ γj = τ ◦ Sol(Nj)

which suffices as all other variables are not affected by the change. It remains to show

that η also solves {[Mci
αi

]
?
= Ni : ζ(i) |i∈{1..r}} ∪ {[N1..Np]

?
= [N1..Nr]} ∪ µ(Γ). η
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solves µ(Γ), as η = ηµ already solved Γ. Applying η on the first r equations, we get

η([Mci
αi

]) = τ(M ci
i )

?
= χ′(i) ∪ τ(ζ(i)) = η(Ni : ζ(i)) for each i, which is almost unified:

we are missing βcii on the right-hand side, which we will compensate for in X-Rep-

Base. Applying η on the (r + 1)-th equation, we get η([N1..Np]) =
⋃
j∈{1..p} nj

?
=

τ([N1, ..., Np]) \ t =
⋃
i∈{1..r} χ

′(i) = τ([N1..Nr]) is already unified.
X-Rep-Distribution: Assume that there exists a substitution τ such that η := τ ◦Sol

solves {[Mc] : ∅ ?
= N : [b1, ..., bn]} ∪ Γ. To be shown is the existence of a substitution τ ′

such that η = τ ′◦{M 7→M′ : [b1]}◦Sol solves {[(M′)c] : [bc−1
1 ]

?
= N : [b2, ..., bn]}∪Γ[M′ :

[b1]/M]. Choosing τ ′ := τ ◦ {M′ 7→ τ(M\ [b1])}, for the only variable the change could
have an effect,

τ ′ ◦ {M 7→M′ : [b1]} ◦ Sol(M) = τ ′ ◦ {M 7→M′ : [b1]}(M)

= τ ′(M′ : [b1])

= τ(M\ [b1] : [b1])

= τ(M) = τ ◦ Sol(M)

showing η = τ ′ ◦ {M 7→M′ : [b1]} ◦ Sol . It remains to show that η also solves {[(M′)c] :

[bc−1
1 ]

?
= N : [b2, ..., bn]} ∪Γ[M′ : [b1]/M]. η solves Γ[M′ : [b1]/M] as it already solved Γ

and η = η ◦{M 7→M′ : [b1]}. Applying η on the left-hand side of ∪ gives us an equation
we get from the assumption, with the only difference that a [b1] is missing from both

sides of
?
=, which does not interfere with our goal, namely that η remains a solution.

X-Rep-Base: This rule is not complete in itself, but only in combination with X-
Partition. Assume that there exists a substitution τ such that η := τ ◦ Sol solves

{[Mc
α] : e

?
= N : ∅}∪Γ. In particular, η(Mc

α)∪η(e) = η(N). We dub β := η(Mα), which
is the “indefinite amount” we addressed in the completeness proof for X-Partition. To
be shown is the existence of a substitution τ ′ such that η = τ ′ ◦ {Mα 7→ α, N 7→
e} ◦ Sol unifies Γ[α/Mα, e/N]. We can choose τ ′ in such a way that τ ′(α) = β and
τ ′(x) = τ(x) otherwise, because either α is a non-empty multiset of set variables, or α
is empty, in which case p in X-Partition must have been 0 such that β, a sub-multiset
of η([N1, ..., Np]), must also be empty. Now η = τ ′ ◦ {Mα 7→ α, N 7→ e} ◦ Sol almost
holds, since

τ ′ ◦ {Mα 7→ α, N 7→ e} ◦ Sol(N) = τ ′ ◦ {Mα 7→ α, N 7→ e}(N)

= τ ′(e) = τ(e)

≈ τ(e) ∪ βc = τ ◦ Sol(N)

but the extra βc is exactly what we were missing in X-Partition, and

τ ′ ◦ {Mα 7→ α, N 7→ e} ◦ Sol(Mα) = τ ′ ◦ {Mα 7→ α, N 7→ e}(Mα)

= τ ′(α) = β = τ ◦ Sol(Mα).

It remains to show that η also solves Γ[α/Mα, e/N], which holds due to the assumption
that η solved Γ already and η = η ◦ {Mα 7→ α, N 7→ e}.
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X-Orientation

(Sol , {M1 : e1
?
= M2 : ∅} ∪ Γ)

(Sol , {M2 : ∅ ?
= M1 : e1} ∪ Γ)

e1 6= ∅

X-Clash

(Sol , ∅ ?
= M : e)

Fail
e 6= ∅

X-Distribution

(Sol , {M : [b1, ..., bk]
?
= [N1, ..., Np] : [b′1, ..., b

′
m]} ∪ Γ)

|ki=1 (Sol , {b1
?
= b′i,M : [b2, ..., bk]

?
= [N1, ..., Np] : [b′1, ..., b

′
i−1, b

′
i+1, ..., b

′
m]} ∪ Γ)

|pi=1 (ν ◦ Sol , {M : [b2, ..., bk]
?
= (ν([N1, ..., N

′
i , ..., Np])) : [b′1, ..., b

′
m]} ∪ Γ)

where N ′
i is fresh and ν = {Ni 7→ N ′

i : [b1]}

k>0,
m>0

X-Application

(Sol , {[M1, ...,Mq] : ∅ ?
= [N1, ..., Np] : e} ∪ Γ)

|ζ∈Z(e,r) (µζ ◦ ν ◦ Sol ,Γ)

where µζ = {Mi 7→ [T(Mi,Nj) | j ∈ {1..p}] : ζ(i) | i ∈ {1..q}}
and ν = {Nj 7→ [T(Mi,Nj) | i ∈ {1..q}] | j ∈ {1..p}}

q > 0, e 6= ∅

Figure 3.7: Algorithm for the linear case

3.4.4 Linearity restriction

If the set variables are linear, i.e. any set variable occurs at most once in the whole
problem, the rules can be simplified to those shown in Figure 3.7. X-Semi-Tautology
becomes unnecessary, as the condition M∩N 6= ∅ will never be met. Instead of partition-
ing the problem with X-Partition, X-Application finds the distribution directly. In
X-Distribution and X-Application, set variables in Γ do not need to be substituted
away, as they only occur in the equation that is currently being observed.

3.5 Single chain on one side

3.5.1 Problem statement

A chain variable Chi (i ∈ N0) can be instantiated by a function of the type Var →
Var → Expr where for any a, b ∈ Var , Chi(a, b) is a chain expression, i.e. an expression
of the form [a = x1, x1 = x2, ..., xn−1 = xn, xn = b]. The function could be written as
λab.[a = x1, x1 = x2, ..., xn−1 = xn, xn = b], following the style of the lambda calculus,
or as [ · = x1, x1 = x2, ..., xn−1 = xn, xn = · ] with · representing the “holes” which the
argument variables can be inserted into. In the problem, the variable always occurs in
the form Chi(a, b). For instance, the problem

Ch1(A, b)
.

= [a = x, x = b], Ch1(c, d)
.

= [C = x, X = d] (3.1)

can be solved by {Ch1 7→ [ · = x, x = · ], A 7→ a, C 7→ c, X 7→ x}.
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3.5 Single chain on one side

A chain is not allowed to have any circles, i.e., all the variables left of the bindings
have to be distinct: The “punched” expression [· = b, b = c, c = b, b = ·] cannot be
instantiated into a valid chain, because “b =” occurs twice. [· = b, b = ·] could be valid,
but instantiated with (b, x), the resulting expression [b = b, b = x] is not a valid chain, as,
again, “b =” occurs twice. The exclusion of cycles comes with gains in expressiveness.
For instance, “X 6= Y ” can be encoded by the equation Ch(a, b)

.
= [a = X,X = Y, Y =

b].

We restrict the extension to contain only one set variable per equation, analogous to
the restriction in Section 3.1, but additionally demanding the variables to be linear, i.e.
each variable can only occur once in the problem (as opposed to the example (3.1)).

As another extension, one could consider allowing one variable on both sides of equa-
tions like in Section 3.2 or 3.3. However, this extension would not be closed, at least
if we try to follow the same procedure as in the previous sections: given a problem
Ch1 : e

.
= Ch2 : e′, when we try to distribute e over to the right-hand side to empty

the bindings on the left-hand side, b ∈ e could occur anywhere in Ch2. Thus, we have
to split Ch2 in two, obtaining Ch1 : (e \ [b])

.
= [Ch′2,Ch′′2] : e′, which is out of the

restriction.

3.5.2 Solution

Reusing the rules from the simple unification problem as well as E-Set-Distribution,
E-Clash and E-Set-Orientation from Section 3.1, any one-sidedly chain-extended
problem can be reduced to a problem containing only equations of the form Ch(a, b)

.
= e,

where e is a simple expression. As the length of e is known, the problem can be solved
by Ch 7→ [· = X1, X1 = X2, ..., X|e|−1 = ·] (Xi are fresh) and using simple algorithm for
the rest.

However, that alone would leave us in trouble as, if a chain variable is mapped to
[· = X,X = b, b = ·], the prohibition of cycles in the chain requires us to remember that
any branch that maps X to b must be discarded, should the necessity arise later in the
process. Furthermore, if the algorithm terminates, still containing the meta variable,
the solution must include this constraint.

To this end, we introduce the new construct of duplicate-avoidance-sets into the Solver
data structure. When substituting Ch(a, b) with the freshXi, we add {a,X1, ..., X|e|−1}D?

to Γ, which takes part in all substitutions applied on Γ and acts according to the rules
shown in Figure 3.8. As soon as two variables in the set are the same, the branch
fails (DA-Crash); if the whole set only consists of distinct ground variables, the set is
discarded. The algorithm terminates (DA-Termination) when Γ contains no more re-
ducible equations, leaving only the (empty or non-empty) final constraints for the meta
variables.

3.5.3 Correctness

With the variables being linear, the correctness is straightforward enough we allow our-
selves to omit a formal proof at this point. May we point out that linearity is in fact
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3 Multiset Extensions

DA-Crash
(Sol , {[..., xi, ..., xi, ...]D?} ∪ Γ)

Fail

DA-Tautology
(Sol , {AD?} ∪ Γ)

(Sol ,Γ)
A is distinct and contains

only ground variables

DA-Termination
(Sol ,Γ)

(Sol , ∅)
Γ contains only distinct

DA-multisets

SCh-Application

(Sol , {Chi(a, z) : ∅ ?
= e} ∪ Γ)

({Chi 7→ [· = X1, ..., X|e|−1 = ·]} ◦ Sol , {{a,X1, ..., X|e|−1}D?} ∪ Γ[[· = .. = ·]/Chi])

SCh-Empty-Crash

(Sol , {Ch(a, z) : ∅ ?
= ∅} ∪ Γ)

Fail

Figure 3.8: Algorithm for the one-sidedly chain-extended problem

needed: given a problem Ch(a, b) = [..], Ch(x, y) = [..], we would substitute Ch by
[· = X1, ..., Xn = ·], yielding [a = X1, ..., Xn = b] = [..], [x = X1, ..., Xn = y] = [..]. But
only remembering {a,X1, ...} to be distinct, we fail to prohibit X3 7→ x, which introduces
a cycle into the second chain.
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4 Implementation

The fully multiset-extended problem covered in Section 3.4 was implemented as a stack-
project [11], which can be found under https://github.com/1qxj-yt/kettenunif.
After cloning the git repository, running stack build inside the folder installs all the
dependencies needed and builds the application. stack run starts the application.

4.1 Functionalities

The application prompts a welcome message, whereupon it enters a read-eval-print-loop
(REPL):

Welcome!

Type a unifcation problem, :v to toggle verbosity or :q to quit.

> _

There are four types of commands accepted by the interpreter.

〈Command〉 ::= 〈Control〉 | 〈UnifProb〉 | 〈SubstApp〉 | 〈SubstComp〉

Control Commands

“:q” quits the application.
“:v” toggles the verbosity of the problem solver. The verbosity modes will be explained
in the next subsubsection.

〈Control〉 ::= :q | :v

Unification Problem

The elements of the problem set (UnifProb) are separated by a comma (,). For each
problem element (ProbEl), the two expressions to be unified are separated by an equals-
sign followed by a full-stop (=.). An expression consists of two parts: the set-variable
part and the bindings part. If the set part is non-empty, the two parts are separated by
a colon (:). The set part is a finite list of set variables separated by semicolons (;). A
set variable is an “M” followed by a natural number, e.g. “M21”. If no number is specified
(M), it will be interpreted as “M0”. The set variable can be followed by a finite amount
of apostrophes (’), in which case the variable is interpreted as a helper variable. The
bindings part is a finite list of bindings enclosed in square brackets ([]) and separated
by commas (,). A binding is a pair of variables separated by an equals-sign (=), where
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4 Implementation

a variable is a latin letter followed by a number. If no number is specified (x), it will be
interpreted as being followed by a zero (x0). If the letter is small, the variable is ground;
if it is capital, the variable is meta.

The syntax is summarized in the following grammar:

〈UnifProb〉 ::= ε | 〈ProbEl〉 | 〈ProbEl〉,〈UnifProb〉
〈ProbEl〉 ::= 〈Expr〉=.〈Expr〉
〈Expr〉 ::= [〈Binds〉] | 〈Sets〉:[〈Binds〉]
〈Sets〉 ::= 〈SetVar〉 | 〈SetVar〉;〈Sets〉

〈SetVar〉 ::= M〈Int〉〈Apos〉
〈Apos〉 ::= ε | ’ | ’〈Apos〉
〈Binds〉 ::= ε | 〈Bind〉 | 〈Bind〉,〈Binds〉
〈Bind〉 ::= 〈Var〉=〈Var〉
〈Var〉 ::= 〈GroundVar〉 | 〈MetaVar〉

〈GroundVar〉 ::= 〈UpperChar〉〈Int〉
〈MetaVar〉 ::= 〈LowerChar〉〈Int〉

〈Int〉 ::= ε | 0 | 1 | 2 | 3 | 4 | 5 | 6 | ...
〈UpperChar〉 ::= A | B | C | D | ... | Y | Z
〈LowerChar〉 ::= a | b | c | d | ... | y | z

The behaviour following the input of a unification problem depends on the current
verbosity mode, of which there are three. In Silent-mode, all the solutions will be
listed:

> [X = a, B = C] =. M2;M2:[X = X3, A = x], [X = g0, H8 = s] =. M:[b = g]

[{M→[H8=s],M2→[]|B→A,C→x,X→b,X3→a}]

whereas in Counting-mode, only the number of solutions will be displayed, as well as
the proportion of distinct solutions to the number of all solutions in the list:

> :v

Switched verbosity to: Count

> [X = a, B = C] =. M2;M2:[X = X3, A = x], [X = g0, H8 = s] =. M:[b = g]

1 [1/1=100%]

In Verbose-mode, the whole derivation tree will be printed from which the solutions
were obtained:

> :v

Switched verbosity to: Verbose

> [X = a, B = C] =. M2;M2:[X = X3, A = x], [X = g0, H8 = s] =. M:[b = g]

(id, E [X=a,B=C] :=?: E M2;M2:[X=X3,A=x] ∪ Γ)
x-distribution
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4.1 Functionalities

(id, B X=a :=?: B X=X3 ∪ Γ)
decomposition

(id, V a :=?: V X3 ∪ Γ)
orientation

(id, V X :=?: V X ∪ Γ)
tautology

(id, V X3 :=?: V a ∪ Γ)
application

({id|X3→a}, E [B=C] :=?: E M2;M2:[A=x] ∪ Γ)
x-distribution

...

Substitution applied on Expressions

A substitution application is a finite list of substitutions followed by an expression. A
substitution is enclosed in curly brackets ({}) and consists of two components: the
set-variable component and the variable component. If the set-variable component is
non-empty, the two components are separated by a vertical line (|). The set component
is a finite list of set-maps separated by commas. A set-map is a set variable followed by
a hyphen-minus (-), a greater-than sign (>) and an expression. The variable component
is a finite list of variable maps separated by commas, where a variable-map is a meta
variable followed by hyphen-minus, a greater-than sign and a (ground or meta) variable.

The syntax is summarized in the following grammar:

〈SubstApp〉 ::= 〈SubstList〉〈Expr〉
〈SubstList〉 ::= 〈Subst〉 | 〈Subst〉〈SubstList〉
〈Subst〉 ::= {〈VarComp〉} | {〈SetComp〉 | 〈VarComp〉}

〈VarComp〉 ::= ε | 〈VarMap〉 | 〈VarMap〉,〈VarComp〉
〈VarMap〉 ::= 〈MetaVar〉->〈Var〉
〈SetComp〉 ::= 〈SetMap〉 | 〈SetMap〉,〈SetComp〉
〈SetMap〉 ::= 〈SetVar〉->〈Expr〉

The result of running the command is the input expression with the substitutions
applied on it successively from right to left.

> {X -> a, B -> C, Y -> a} [X = x, B = C]

E [a=x,C=C]

> {C -> c} {X -> a, B -> C, Y -> a} [X = x, B = C]

E [a=x,c=c]

> {M1 -> M2:[] | } M1:[X = x, B = C]

E M2:[a=x,B=C]

> {M1 -> M2:[] | X -> a } [X = x, B = C]

E [a=x,B=C]
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Substitution Composition

A substitution composition is a finite list of substitutions.

〈SubstComp〉 ::= 〈SubstList〉

The result is the composition of substitutions from right to left:

> {X -> a, B -> C, Y -> a} {C -> B, B -> X}

{id|B→a,X→a,Y→a}
> {M1 -> M2:[] |} {M0 -> M1:[] |}

{M→M2:[],M1→M2:[]|id}

The resulting substitution is restricted (Def. 2.1.10) to non-helper variables:

> {M1’ -> M2:[] |} {M0 -> M1’:[] |}

{M→M2:[]|id}

4.2 Accelerating rules

The following rules are not needed for correctness, but aim to slightly accelerate the
whole process:

X-AccelL

(Sol , {M : ∅ ?
= N : e} ∪ Γ)

({M 7→ N : e} ◦ Sol ,Γ[N : e/M ])
eqn. is non-block

X-AccelR

(Sol , {M : e
?
= N : ∅} ∪ Γ)

({N 7→M : e} ◦ Sol ,Γ[M : e/N ])
eqn. is non-block

Also, it might be beneficial to use E-Tautolgy when applicable, which is a special case
of X-Emp-Application.

4.3 Tests

Apart from the proofs provided in the previous chapter, the soundness of the algorithm
was also experimentally examined through QuickCheck[1] version 2.9.2. Random prob-
lems were created and the solutions checked, i.e. each of the solutions were applied onto
both sides of every equation in the problem, and their equality was verified.

To ensure a reasonably quick but meaningful verification during development, the
following restrictions were placed upon the variable space as well as the length of the
expressions: The variables were chosen from a linear distribution on the set {a, b, c, x, y, z,
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A,B,X, Y }, as well as the set variables from {M1, ...,M10}. The lengths of the variable-
component and the set-variable-component of an expression were chosen from the range
from 0 to 3, respectively.

To inspect the randomization directly, move to the test folder, start ghci and load
the module Simple.SoundnessAuto.Bi Mset:

machine@user kettenunif % cd test

machine@user test % stack -- exec ghci

GHCi, version x.y.z: http://www.haskell.org/ghc/ :? for help

Prelude> :l Simple.SoundnessAuto.Bi_Mset

[1 of 1] Compiling Simple.SoundnessAuto.Bi_Mset

( Simple/SoundnessAuto/Bi_Mset.hs, interpreted )

Ok, modules loaded: Simple.SoundnessAuto.Bi_Mset.

Then, typing generate arbitrary with its type specified prints a random value from
the distribution described above.

*Simple.SoundnessAuto.Bi_Mset> generate arbitrary :: IO Var

X

*Simple.SoundnessAuto.Bi_Mset> generate arbitrary :: IO Var

Y

*Simple.SoundnessAuto.Bi_Mset> generate arbitrary :: IO Bind

B=A

*Simple.SoundnessAuto.Bi_Mset> generate arbitrary :: IO Bind

A=A

*Simple.SoundnessAuto.Bi_Mset> generate arbitrary :: IO UnifProblemEl

M10;M1:[x=z,B=a] =. M9;M10;M7:[y=X,B=Y]

To generate samples on a particular seed, load the QuickCheck Random and Gen mod-
ules. (Typing :set prompt "*> " hides the module name(s)).

*> :m +Test.QuickCheck.Random Test.QuickCheck.Gen

Now, when g is the seed and s the size of the sample, unGen arbitrary (mkQCGen g) s
with its type specified yields constant results, as long as g and s stay the same. The
size has no effect on the relevant types, except for the unification problem, which is (for
the purpose of observing the random generation) a list (actually, a set) of unification
problem elements. In that case, the size limits the maximal length of the list.

*> unGen arbitrary (mkQCGen 42) 0 :: Var

c

*> unGen arbitrary (mkQCGen 42) 0 :: Var

c

*> unGen arbitrary (mkQCGen 42) 0 :: [UnifProblemEl]

[]

*> unGen arbitrary (mkQCGen 42) 1 :: [UnifProblemEl]
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[]

*> unGen arbitrary (mkQCGen 42) 2 :: [UnifProblemEl]

[M9;M1:[z=x] =. [z=y,x=a,A=X]]

Note that the QuickCheck version can influence the seed-to-sample relation, such that
the behaviour might not be reproducible in different versions.

Instead of relying solely on randomness, there were also concrete test cases imple-
mented:

input problem expected output

{x = Y
.

= X = y} [{X 7→ x, Y 7→ y}]
{x = x

.
= z = z} [ ]

{X = Y
.

= Y = a} [{X 7→ a, Y 7→ a}]
{X = Y

.
= Y = A} [{X 7→ A, Y 7→ A}]

{X = Y
.

= Y = A} [{A 7→ X,Y 7→ X}]

{[A = B,C = D]
.

= [x = y, z = w]} [{A 7→ x, B 7→ y, C 7→ z, D 7→ w},
{A 7→ z, B 7→ w, C 7→ x, D 7→ y}]

{M : [X = a]
.

= [A = a, B = D]} [{M 7→ [B = D] | X 7→ A},
{M 7→ [A = a] | D 7→ a, X 7→ B}]

{[M,M ] : ∅ .
= [A = a, a = a]} [{M 7→ [a = a]|A 7→ a}]

When checking the solutions, the substitutions should be compared for equivalence on
the variables that appear in the problem, instead for exact equality. For instance, for the
problem {X = Y

.
= Y = A}, the substitutions {A 7→ X,Y 7→ X} and {A 7→ Y,X 7→ Y }

are just renamings of each other and thus equally appropriate (and general, checking
also a small proportion of completeness).

On top of the tests on unification problems, there were also concrete test cases imposed
on substitution application as well as composition. Furthermore, the property enforced
on the ordering on unification problem elements in Subsection 3.2.2 is tested on random
samples. Running stack test in the top folder runs all these tests, which, as of January
2020, all pass successfully, after having repeatedly helped during development by failing
correctly.
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5 Conclusion

After motivating the unification problem of letrec-bindings through the proof of cor-
rect program transformations, a solution to the simple version was proven terminating,
sound and complete. In Chapter 3, multiset extensions were successively generalized,
beginning with restricted cases heavily limiting occurrences of set variables. Allowing
set or multiset variables on both sides of the equation required explicit specifications
on the order of rule applications to be established for the process to terminate. The
fully multiset-extended problem, which allows an arbitrary number of possibly the same
multiset variable at any place in the problem, was constructively shown decidable, which
was previously unknown. Unlike in the previous extensions, making every rule sound
and complete would have forced the algorithm into non-termination, wherefore two rules
that were not sound and complete on their own cancelled out each other’s “coordinated
misconduct”. As a special type of set variable, chain variables were also briefly discussed.
In Chapter 4, a REPL implementation of the algorithm was presented, along with tests
imposed on the program.

Outlook

There remains potential for further improvement and development. For example, the
only solution to {[A = B,A = B]

.
= [a = b, a = b]} is {A 7→ a, B 7→ b}, but the algorithm

finds two times the same solution:

> [A=B,A=B] =. [a=b,a=b]

[{id|A→a,B→b},{id|A→a,B→b}]

If the solutions are exactly the same, counting-mode finds those overlaps:

> :v

Switched verbosity to: Count

> [A=B,A=B] =. [a=b,a=b]

2 [1/2=50%]

As the problem, and with it, the size of the solution set, becomes larger, those exact
overlaps can get unpleasant:

> M10:[Y=X,x=b] =. M8;M9:[A=z,X=Y,A=b] ,

M2;M8:[] =. [x=B,a=b,A=X],

M10:[x=z,B=x] =. M9;M9:[X=B,B=X,A=x]

434 [40/434=9%]

47



5 Conclusion

If the duplicates are not exact, counting-mode does not see that a solution could be
renamed into another: The set of solutions to {M0 : [a = a, a = a]

.
= M1 : [a = a]} can

be expressed as [{M0 7→ T : ∅,M1 7→ T : [a = a]}], but the algorithm finds three different
solutions:

> M:[a=a,a=a] =. M1:[a=a]

3 [3/3=100%]

More precisely:

> :v

Switched verbosity to: Verbose

> M:[a=a,a=a] =. M1:[a=a]

[

{M→T(M1,M):[], M1→T(M1,M):[a=a] |id},

{M→T(M,M1’):[], M1→T(M,M1’):[a=a] |id},

{M→T(M,M1’’):[a=a],M1→T(M,M1’’):[a=a,a=a]|id}
]

A fix has to involve at least X-Distribution, in which the equivalence of spawned
branches could be recognized.

Another direction in which further progress could be made is the treatment of chain
variables, which remained very limited in this thesis. For cases like

[Ch(a, b),Ch(c, d)]
?
= [Ch(x, y),Ch(z, w)],

we have to begin by clarifying what kind of solutions we even want a potential algorithm
to provide us with.
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